Definition of Trace Function 定義如下:
Trace Function examples
(Generalized)Definition of WG transform Input: Output: 假設 Trace表示法為 ,其中 即為 之 WG-Transform結果
WG transform example 經過WG-Transform後得到
(Generalized)Definition of WG sequence Input: {a} a binary sequence,period Output: {b} a binary sequence,period 將{a}以Trace表示,找到其相對應的產生function I.e: 則將 作WG Transform得到之 依序求出 則{b}稱為{a}的WG Transform Sequence
WG transform sequence example 對應的產生函數為 經過WG-Transform {b}={1000000}
WG transform special case 但目前僅發現於 n=3k-1時: n=3k-2時: 轉換所得之 所產生的sequence具備 2-level autocorrelation性質
WG transform special case 因為只有此特殊形式的f(x)=Tr(g(x))經過WG-Transform會產生autocorrlelation,所以之後的討論均僅針對此形式經過WG-Transform後所得的 ,談論以下性質 所產生sequence的autocorrelation特性 對應Boolean Function的Nonlinearlity 對應Boolean Function的CI 對應Boolean Function的algebraic degree
Definition of Hadamard Transform
Hadamard Transform example
Hadamard Transform example (cont.)
Hadamard Transform example (cont.)
Hadamard Transform of WG-transform 討論特殊g(x)型態下,WG-Transform後的結果 進行Hadamard Transform,其值如下: By [Multiplicative difference sets via additive characters] DILLON 99
Definition of Hadamard Transform Boolean function version 特殊g(x)型態下,WG-Transform後的結果 當中的 x 改以一組基底的線性組合來表示,則展開化簡後形成一Boolean Function Example: (此處以較簡單的g(x)展示)
Hadamard Transform Boolean function version example 取標準基底 ,則
Hadamard Transform of polynomial form and Walsh Transform of Boolean form 參數關係如下: 一定找的到對應的參數
Example
Hadamard Transform of polynomial form and Walsh Transform of Boolean form 直覺意義如下: Hadamard Transform參數 Walsh Transform參數向量 0<=HW(w)<=r 使得 使得 使得 使得
r-Resilient of Boolean form WG-Transform f(x) is r-order correlation immune if Recall that Let , be a basis of over And Theorem f(x) is r-resilient
1-Resilient of Boolean form WG-Transform Theorem 設基底為 收集n個 集合中線性獨立向量 寫作A矩陣之列向量,則取新基底如下,則依此新基底所產 生之Boolean Function具有1-order correlation immune
1-Resilient of Boolean form WG-Transform Pf:
WG’s Boolean version CI order upper bound Theorem: WG-transform Boolean version with CI order upper bound Pf: