The 2st International Iopp 9421 Conference

Slides:



Advertisements
Similar presentations
中三選科— 文科.
Advertisements

陈旭荣 中科院 近代物理研究所 第九届全国会员代表大会暨学术年会, 华中师范大学,武汉,2014年4月18日--23日.
国家自然科学基金项目申请 经验交流与心得体会
跨境養老對香港特區政府的機遇及挑戰 陳章明教授 安老事務委員會主席 2012年10月12日.
A Force from Empty Space The Casimir Effect
--- Chapter 10 Convection ---
大学英语教学在学分制教学的比重 类别 文科 理科 大学英语 《课程要求》 总学时 周学时 总学分
从2008年度时尚先生看我们的时代精神方向.
學習行為觀察與評估 講 師:陳怡華.
知行合一 俞熹 很熟,听了一年我的课,复旦,本来应该进清华。母校,很不紧张,厕所背。中学老师上课,你不来让你写检讨,大学老师怕你不来,给你写检讨。最怕三件事, 上课睡觉打呼噜,出去上厕所不回来,老师讲得好不鼓掌。 俞熹
SHARE with YOU Why am I here? (堅持……) What did I do?
方德清 马余刚 蔡翔舟 田文栋 王宏伟 陈金根 郭威
2015年年终总结 郭宗宽
Introduction to physics
Thinking of Instrumentation Survivability Under Severe Accident
模式识别 Pattern Recognition
Differential Equations (DE)
广义相对论课堂5 引力红移/时间膨胀检验和推论
『從原子到宇宙』課程第四週 胡維平 國立中正大學化學暨生物化學系 10/06/2011
Draft Amendment to STANDARD FOR Information Technology -Telecommunications and Information Exchange Between Systems - LAN/: R: Fast BSS.
Fundamentals of Physics 8/e 27 - Circuit Theory
自引力体系统计物理的新进展 Ping He
普通物理 General Physics 9 - Center of Mass and Momentum
普通物理 General Physics 26 - Ohm's Law
機械波 Mechanical Waves Mechanical wave is a disturbance that travels through some material or substance called the medium for wave. Transverse wave is the.
边界条件/CFX表达式语言 讲座 3.
机器人学基础 第四章 机器人动力学 Fundamentals of Robotics Ch.4 Manipulator Dynamics
Short Version :. 11. Rotational Vectors & Angular Momentum 短版:. 11
參加2006 SAE年會-與會心得報告 臺灣大學機械工程系所 黃元茂教授
Understanding masses of charm-strange states in Regge phenomenology
New Physics Beyond SM: An Introduction
塑膠材料的種類 塑膠在模具內的流動模式 流動性質的影響 溫度性質的影響
多相流搅拌器 练习 7.
Wang Meijuan Liu Lianshou Wu Yuanfang IOPP, Huazhong Normal University
Fundamentals of Physics 8/e 28 - Magnetic Force
Chapter 8 Thermodynamics of High-Speed Gas Flow (第8章 气体和蒸气的流动)
The Nature and Scope of Econometrics
Neutron Stars and Black Holes 中子星和黑洞
Summary Chapter 2 1. Solution for H-like atom/ion (one-electron system) radial & angular functions of Atomic orbitals, electron cloud, quantum numbers.
Quark Polarization in Relativistic Heavy Ion Collisions
Using the relativity principle, Einstein is able to derive that the energy of an object can be written as For v = c, the energy is infinite. Hence you.
Fundamentals of Physics 8/e 0 – Table of Contents
行星運動 人類對天體的運行一直充滿著好奇與幻想,各式各樣的傳說與理論自古即流傳於各地。在這些論述中,不乏各式神鬼傳說與命運註解,也包含了許多爭論不休的學術觀點。雖然這些形而上的虛幻傳奇仍然流傳於坊間,但是科學上的爭執卻因牛頓重力理論(law of gravitation)的出現而大致底定。
Mechanics Exercise Class Ⅰ
The Four Color Theorem & Counterexample
宇宙磁场的起源 郭宗宽 2016两岸粒子物理及宇宙学研讨会
安慰能力測試 我感到非常孤單 為何要這麼痛苦?做人毫無價值,活著根本沒有意思。 我拖累了你。 假如我不在,情況會如何呢?
凝聚态的魅影 1.
Summary for Chapters 24 摘要: 24章
Outline QGP强子化过程中 夸克组合机制普适性的研究 答辩人 姚 涛 导 师 谢去病教授 山东大学 2009年5月27日.
Fundamentals of Physics 8/e 26 - Ohm's Law
中央社新聞— <LTTC:台灣學生英語聽說提升 讀寫相對下降>
動量與能量.
第一章 力和运动 §1-1 质点运动的描述 §1-2 圆周运动和一般曲线运动 §1-3 相对运动 常见力和基本力 §1-4 牛顿运动定律
运动学 第一章 chapter 1 kinematices.
王伟 上海交通大学 2015 怀柔 强子物理与核物理前沿研讨会
Q & A.
Nucleon EM form factors in a quark-gluon core model
New Interacting Model and its Stability
高能核核碰撞中净电荷 涨落高阶矩的研究 答辩人:冯兆斌 指导教师:梁作堂 教授.
Mechanics Exercise Class Ⅱ
2014年年终总结 郭宗宽
缺中子核139Pr高自旋态的研究 杨韵颐,朱胜江,肖志刚,王建国, 丁怀博,徐强,顾龙,张明, 闫威华,王仁生 清华大学物理系
投影组态相互作用方法 (Projected Configuration Interaction(PCI) method
School of law, Guizou University
Energy Saving Equipment
Summary : 4. Newton's Laws 摘要: 4. 牛頓定律
Electromagnetic properties of light nuclei
Principle and application of optical information technology
Presentation transcript:

The 2st International Iopp 9421 Conference IOPP, Room 9410. Nov.19—Nov.20 2019/4/25 IOPP-9421

Rindler 坐标图景与匀加速流体力学解 II Ze-fang Jiang, Chun-bin Yang Csörgő Tamás, Mate Csanád 2019/4/25 IOPP-9421

Outline A detailed description of accelerating solutions of relativistic perfect fluid hydrodynamics; (T. Csörgő, M. I. Nagy, M. Csanád. Phys. Lett. B663 (2008) 306) (M. I. Nagy, T. Csörgő, M. Csanád. Phys. Rev. C77 (2008), 024908) Pseudorapidity distribution and Initial energy density of Charged particle at CERN-LHC Energies; Outlook. 2019/4/25 IOPP-9421

Part 1. Hydrodynamic solution 1.1 Rindler coordinates (Minkovswki Vacuum); 1.2 Metric and covariant derivative; 1.3 Hydrodynamic equation with Rindler coordinates; 1.4 Accelerating solution of relativistic perfect fluid hydrodynamics. 2019/4/25 IOPP-9421

1.1 Rindler coordinates (Minkovswki Vacuum) What is the Rindler coordinates? 1.In relativistic physics, the Rindler coordinate chart is an important and useful coordinate chart representing part of flat spacetime, also called the Minkowski vacuum. 2.The Rindler coordinate frame describes a uniformly accelerating frame of reference in Minkowski space. In special relativity, a uniformly accelerating particle undergoes hyperbolic motion. Reference: Einstein, Albert; Rosen, Nathan (1935). "A Particle Problem in the General Theory of Relativity". Physical Review. 48: 73. Rindler, Wolfgang (1969). Essential Relativity. New York, Van Nostrand Reinhold Co. doi:10.1007/978-1-4757-1135-6. ISBN 978-0-387-90201-2. Wolfgang Rindler 2019/4/25 IOPP-9421

1.1 Rindler coordinates (Minkovswki Vacuum) What is the acceleration Observer? What is the proper acceleration (along the hyperbola)? What is the difference between Newton's inertial frame? Koks, Don: Explorations in Mathematical Physics (2006), pp. 240-252 http://astroreview.com/issue/2012/article/black-hole-horizons-and-how-they-begin 2019/4/25 IOPP-9421

1.1 Rindler coordinates (Minkovswki Vacuum) Rindler Chart , And why apply to hydrodynamic Lightcone Rindler Chart acceleration parameter g=1/r 2019/4/25 IOPP-9421

运动沿惯性系 Σ 系的 x 轴方向,Σ' 系为沿 Σ 系 x 轴以速度 v 运动的某一瞬时惯性系。由洛伦兹变换关系: 双曲线运动是变速直线运动? 运动沿惯性系 Σ 系的 x 轴方向,Σ' 系为沿 Σ 系 x 轴以速度 v 运动的某一瞬时惯性系。由洛伦兹变换关系: 其中 c 是光速。 速度变换公式; 相对论下的加速度变换公式; 2019/4/25

相对论加速度变换公式与牛顿经典力学的区别与对比: 牛顿经典力学遵从伽利略相对性原理,不同的惯性系对同一运动物体的速度描述不同,但对加速度的描述是相同的。在一个惯性系中看到的匀加速运动,在其他惯性系中也都认为是匀加速运动,而且其加速度数值都一致相同。 相对论中,无论从运动学或动力学的角度考虑,没有哪一个惯性系能观察到加速度为定值的运动,否则超光速成为可能。在相对论中提到的匀加速运动,是对作变速直线运动物体的无穷多个瞬时惯性系来讲,各瞬间相对物体静止的每个瞬时惯性系中看到的加速度都相同。这种匀加速运动就是我们讨论的双曲线运动(匀加速运动)。 2019/4/25 IOPP-9421

相对论中的加速度: 中的 v 为瞬时惯性系(Σ' 系)相对于 Σ 系的速度. 物体 Σ' 系相对于瞬时惯性系( Σ' 系)静止(不妨设 t=0 时刻),加速度为常值 g 加速度(Σ' 系中),在 Σ 系中的观察者看来,由逆变公式,加速度为: 固定加速度物体t=0时刻,v=0 结论:在Σ 系中看到该物体的加速度随 t 增大而减小。 v不是常值,而是t的函数 2019/4/25 IOPP-9421

共动观察者的观测量 I 当知道在 Σ 系中(从 t0=0 到任意 t 观测到)的物体末速度为 vf 此刻的时间 此刻的固有时(外光锥中) 此刻的位置(外光锥中) 2019/4/25 IOPP-9421

共动观察者的观测量 II 固有时与速度的逆关系: 结论:当在 Σ 系中观测时,当固有时 时,观测到的做匀加速运动的物体末态速度极值为 c 而不会超过光速 c 。 带入末速度到时间与位置信息中,可得到与固有时相关的时间和位置为: 2019/4/25 IOPP-9421

共动观察者的观测量 III Σ 系时空图: Σ 系中当 时,t=0, x=0, 当选取合适的坐标原点时(往-x方向平移 单位)得到在 Σ 系描述匀加速运动的方程: 渐近线: 2019/4/25 IOPP-9421

共动观察者的观测量 IV E点出发,D点加速完毕,G点减速完毕,到达;H点加速完毕,F点回到地球。 对ED段, 双生子佯谬: 乘坐飞船的G不可能总相对于某一惯性系静止,否则他将一去不复返,不能再与B相会。 若 B 待在地球,G乘坐飞船做直线运动从地球开始以重力 g 的加速度匀加速2年,再以g匀减速2年到达旅行地点;到达后,立即以g加速2年,接着以 g 减速2年回到地球,飞船上的G认为她飞行了8年,那么地球上的B计算要等待了多久? E点出发,D点加速完毕,G点减速完毕,到达;H点加速完毕,F点回到地球。 对ED段, 君生我未生,我生君已老; 恨不生同时,日日与君好; 我生君未生,君生我已老;我离君天涯,君隔我海角。 2019/4/25 IOPP-9421

1.1 Rindler coordinates (Minkovswki Vacuum) Heavy Ion Collision figure 2019/4/25 IOPP-9421

1.2 Metric and covariant derivative; Useful Background about perfect fluid hydrodynamic solution: Landau Hydrodynamic and Hwa-Bjorken Hydrodynamic solution L. D. Landau, Izv. Akad. Nauk Ser. Fiz. 17, 51 (1953); R. C. Hwa, Phys. Rev. D 10, 2260 (1974) J. D. Bjorken, Phys. Rev. D 27, 140 (1983). Why hrdrodynamic can be used in heavy ion collision? P. F. Kolb, and U. Heinz, arXiv: 0305084 [nucl-th]. 2019/4/25 IOPP-9421

1.2 Metric and covariant derivative; The definiTion of the Rindler coordinates : Ω stands for the rapidity of the flow. The domain of the variables is 2019/4/25 IOPP-9421

1.3 Hydrodynamic equation with Rindler coordinates; The energy-momentum tensor (prefect fluid): The metric tensor: uμ and ε, and p are, respectively, the 4-velocity, energy density, and pressure of fluid. ε and p are related by the equation of state(EoS): is the speed of sound. 2019/4/25 IOPP-9421

The energy-momentum conservation law The relativistic Euler equation and the energy conservation equation as below: The general form of the charge conservation equations is as follows 2019/4/25 IOPP-9421

Write down these equations also in a three-dimensional notation. The thermodynamical quantities obey genreal rules. 2019/4/25 IOPP-9421

Rewetring and rerranging the Euler and energy conservation equations : Using the assumption : Rewetring and rerranging the Euler and energy conservation equations : The solution is easily obtained as (Inside the forward lightcone) 2019/4/25 IOPP-9421

1.4 Accelerating solution of relativistic hydrodynamics The only possible non-trivial solution in above case, which are 4 different sets of the paremeters λ, κ, d and K the possible cases as follows (λ = 1 is the Hwa-Bjorken solution in 1+1 dimensions.): Case λ d κ ϕ a.) 2 R b.) 1/2 1 (κ+1)/κ c.) 3/2 (4d-1)/3 d.) e.) In all cases, the velocity field and the pressure is expressed as : 2019/4/25 IOPP-9421

2.1 The rapidity distribution Freeze-out condition: the freeze-out hypersurface is pseudo-orthogonal to the four velocity field uu , and the temperature at η = 0 reachs a given Tf valve. The expression of rapidity distribution in the 1+1 dimensional is as below: with 2019/4/25 IOPP-9421

2.2 The energy density estimation Follow Bjorken's method, the initial energy density for acclerationless, boost-invariant Hwa-Bjorken flows J. D. Bjroken, Phys. Rev. D 27, 140 (1983) For an accelerating flow, the initial energy density Here is the proper-time of thermalization, and is the proper-time of freeze-out. 2019/4/25 IOPP-9421

The conclusion of 200 GeV AUAU collision at RHIC eneriges. I. G. Bearden el al [BRAHMS], Phys. Rev. Lett 94, 162301 (2005) M. Csanad, T. Csorgo, Ze-Fang. Jiang and Chun-Bin. Yang, arXiv:1609.07176. 2019/4/25 IOPP-9421

Part 2. Initial energy density of pp collision at the LHC 2019/4/25 IOPP-9421

1. The pseudo-rapidity distribution The relation between rapidity can be writen as follows: The relation between rapidity with pseudo-rapidity can be writen as follows: From Buda-Lund model 2019/4/25 IOPP-9421

The pseudo-rapidity distribution at CMS+TOTEM 7 TeV and 8 TeV pp collision data. 1. V. Khachatryan, el al [CMS], Phys. Rev. Lett 105, 022002 (2010); 2.The TOTEM Collaboration, Eur. Phys. Lett, 98 (2012) 31002. 3. G. Antchev, el al[TOTEM], arXiv: 1411.4963 (2014); 4. The CMS and TOTEM Collaborations, Eur. Phys. J. C (2014) 74:3053; 2019/4/25 IOPP-9421

The energy density estimation at CMS+TOTEM 7 TeV and 8 TeV pp collision. Estimation made by Bjorken The initial energy density are under-eatimatied by Bjorken formula, the corrected are: Pressure/energy/non-ideal EoS Effect of the pressure The expansion of intial volume element 2019/4/25 IOPP-9421

CMS+TOTEM 7 TeV and 8 TeV pp collision. λ 7 TeV 0.902 1.20989 1.3001 1.118 0.12 5.895(NSD) 8 TeV 1.16283 1.2367 1.101 5.38(Inelastic) 2019/4/25 IOPP-9421

The initial energy density, Temperature and pressureestimate at CERN-LHC CMS+TOTEM 7 TeV 2019/4/25 IOPP-9421

The initial energy density, Temperature and pressureestimate at CERN-LHC CMS+TOTEM 8 TeV 2019/4/25 IOPP-9421

Part 3. Outlook 2019/4/25 IOPP-9421

1. Heavy ion collision initial energy density estimate. 2. Critial point for QGP. 3. Other Hydrodynamic conclusion. 2019/4/25 IOPP-9421

Thank you 2019/4/25 IOPP-9421