第十九章 谓词逻辑.

Slides:



Advertisements
Similar presentations
夯实教师教育 办好非师范教育 ---- 以外语专业为例 河北师范大学 李正栓. 1. 坚定不移地实施教师教育 A. 关键词:师范院校 师范院校是以培育师资为目的的教育机构,多属于高等教育 层级。 含 “ 师范大学 ” 或 “ 师范学院 ” 。另外,由师专升为本科的院校 多数更名为 “XX 学院 ”
Advertisements

中医内科 陈良金. 目的要求: 熟悉虚劳的证候特征。 了解虚劳的发病与气血阴阳及五脏的关系。 掌握虚劳和肺痨及一般虚证的区别与联系。 掌握虚劳的治疗要点。 熟悉虚劳各个证型的辨证论治。 了解虚劳的预后及调摄护理。
盈泰盛世精选 - 华泰并购投资基金 宝蓄财富 - 产品部. 产品基本要素 产品名称盈泰盛世精选华泰并购投资基金 管理人北京恒宇天泽投资管理有限公司 托管人国信证券股份有限公司 发行规模 1.2 亿元,以实际募集规模为准 人数限制 200 人上限 投资标的本基金委托将主要投向于华泰瑞联二期并 购基金中心(有限合合)(以企业登记的.
写作中的几点小技巧 金乡县羊山中学 张秀玲. 一、写外貌不用 “ 有 ” 作文如何来写外貌?同学们的作文里总会出现类 似这样的句子: “ XX 可漂亮了,她有一头卷卷的黄头 发,有一双乌黑的葡萄般的大眼睛,有高高的鼻子, 还有一张樱桃小嘴。 ” 如果试着去掉文中的 “ 有 ” ,把文字重新修改一遍,
十大写作技巧. 一、写外貌不用 “ 有 ” 作文如何写外貌?孩子的作文里总会看到类似这样的名 子: “XX 可漂亮了,她有一头卷卷的黄头发,有一双乌黑的 葡萄般的大眼睛,有一个高高的鼻子,还有一张樱桃小嘴。 ” 如果你试着让他们去掉文中的 “ 有 ” ,把文字重新串联一遍, 会发现作文顺了很多。 写上段文字的同学经蒋老师指导后修改如下:
招商谈判技巧 芝麻官营销. 技巧原则 孙子兵法云: “ 兵无常势,水无常形,能 因敌之变化而取胜者,谓之神。 ” “ 内功心法 ” 只有在真正实践中才能体会、 掌握。 谈判有没有具体的套路?有没有 “ 一招制 敌 ” 的擒拿手?
商管群科科主任 盧錦春 年 3 月份初階建置、 4 月份進階建置、 5 月份試賣與對外營業。
“ 十二五 ” 广东省科技计划项目 经费监管培训 广东省科技厅 一、专项经费管理法规 一、专项经费管理法规 二、经费监督检查 二、经费监督检查 三、项目预算调整管理 三、项目预算调整管理 四、课题经费预算执行管理 四、课题经费预算执行管理 五、项目(课题)财务验收 五、项目(课题)财务验收 2.
教育研究课题的实施 北京教育科学研究院 陶文中 第一节 如何制定课题研究计划 (开题论证报告) 一般结构(框架) 1 、课题名称 2 、研究目的和意义 3 、研究的基本内容 ( 1 )理论研究(细分为若干子项目) ( 2 )实践研究( 细分为若干子项目)
1 語音下單代表號 請輸入分公司代碼 2 位結束請按#字鍵 統一證券您好 ﹗ 請輸入分公司代碼結束請按#字鍵,如不知分公司代碼請按*號。 請輸入您的帳號後 7 位 結束請按#字鍵 請在聽到干擾音時輸入您的密碼結束請按#字鍵 主選單一覽表 委託下單請按 1 ; 取消下單請按 2 成交回報請按.
人權教育融入教學與 法治教育 彭巧綾 蔡永棠 閱讀理解 六頂思考帽 以概念圖整理閱讀理解 指導學生運用關鍵詞,繪製概 念圖,並分享修正。
义务教育课程标准实验教材 四年级下册 语文园地六 词语盘点 习作 口语交际 我的发现 日积月累 展示台.
被 江 泽 民 残 酷 迫 害 致 死 的 法 轮 功 学 员 李竟春,女,1954年3月16日出生,江西省九江市人。于2000年12月18日到北京证实大法,关押在北京市门头沟看守所遭受非人的迫害。在狱中李竟春绝食抗争被管教骗喝一瓶“可疑的豆浆”后一直咳嗽不断,发烧呕吐,吐出白色有强烈异味液体,于2000年1月4日死亡。
目录 如何职位分析调查表 职位分析的目的与意义 职位调查表内容与要点说明 职位分析注意事项 职位分析调查工作计划.
1 修辞手法 2 表现手法 3 表达方式 4 结构技巧 表达技巧.
个人简历 制作 天津民族中专 刘冬.
第八编 清代文学 清代文学绪论 第一章 清代诗词文 第二章 《长生殿》与《桃花扇》 第三章 《聊斋志异》 第四章 《儒林外史》
2015年衢州开化 事业单位备考讲座 浙江研究院 刘洁.
事业单位法人年度报告制度改革 业 务 培 训.
第十五章 控制方法.
視力不良學(幼)童 篩檢與矯治常見問題 長庚醫院 兒童眼科 楊孟玲 醫師.
五專醫護類科介紹 樹人醫專 職業教育組 李天豪 組長.
轻松应对百变题型——说明文阅读 五年级 语文 赵老师.
聚焦文化竞争力.
描写家乡的一处景物.
问卷调查法.
小一中文科 家長工作坊
二次函数图象特点的应用 结题报告 K-11 班研究性学习小组 李浚滨制作.
第三章 企业主要经济业务核算 学习目的和要求:通过对工业企业的主要经济业务的了解,要求学生掌握、巩固帐户与借贷记帐法的相关知识及其运用,并进一步了解和熟悉会计核算方法。 本章重点与难点问题是:企业在各阶段的业务核算 内容提要:本章首先介绍企业在各不同阶段(企业创立阶段、企业供应阶段、企业生产阶段、企业销售阶段等)的业务内容;然后介绍了各阶段业务核算所需设置的帐户及其帐户的功能与结构;最后举例说明各阶段业务的核算。
明城 微课程研究运用 姓 名:严静华 单 位:佛山市高明区东洲中学 作品名称:《排比的理解与运用》
校本培训 常州市新北区新桥实验小学 金文英 团体活动助人成长 校本培训 常州市新北区新桥实验小学 金文英
2014年造价员资格考试 建设工程造价管理基础知识 徐建元.
教師權益─ 退撫制度變革修法 吳忠泰 退撫制度變革修法電子檔可在全教總網站下載分享
概其要、析其理 ——议论文事实论据修改 昌平二中 王丽娟
【 准 备 上 课 啦 】 心 境 —— 快 乐 源 泉 学习 — 悦于心 聚于魂 化于行.
第七章 无形资产.
“悦”读,飞越 “考场” 心神飞越 温州中学 郑可菜.
《幼儿园模拟教学》(第一章 第二章) 呼伦贝尔学院 教育科学学院 学前教育教研室.
公文及公文处理 学校办公室 姚利民.
解放軍論壇 中共信息戰發展 對我國軍事戰略之影響.
103校務評鑑程序與注意事項
我班最喜愛的零食 黃行杰.
“深入推进依法行政加快建设法治政府” -《法治政府建设实施纲要》解读
专题五 高瞻远瞩 把握未来 ——信息化战争 主讲教师:.
第六节 可降阶的二阶微分方程 一、 型的微分方程 二、 型的微分方程 三、 型的微分方程.
第十章 现代秘书协调工作.
常用逻辑用语 知识体系: 命题 常用逻辑性用语 充分条件、必要条件、充要条件 基本逻辑连结词 量词.
温泉部操作实务.
目 錄 壹、緣由 貳、問題解析 參、問題歸納 肆、因應對策 伍、評鑑獎勵 陸、追蹤考核 1.
屏東縣105年度 友善校園事務與輔導工作- 國中適性輔導工作專業知能研習(初階課程) 桌遊在班級經營與學生輔導 之應用與連結
题型复习.
資源配置的五個面向 生產什麼 如何生產 何時生產 何處生產 生產收入如何分配 基礎經濟學 Chapter 2 需求﹑供給與均衡.
資源配置的五個面向 生產什麼 如何生產 何時生產 何處生產 生產收入如何分配 基礎經濟學 Chapter 2 需求﹑供給與均衡.
导数的应用 ——函数的单调性与极值.
因式定理.
資源配置的五個面向 生產什麼 如何生產 何時生產 何處生產 生產收入如何分配 基礎經濟學 Chapter 2 需求﹑供給與均衡.
通过分解命题可以发现,命题的内部结构包含了下述内容:
第5章 谓词逻辑的等值和推理演算 谓词逻辑研究的对象是重要的逻辑规律,普遍有效式是最重要的逻辑规律,而等值式、推理式都是普遍有效的谓词公式,因此等值和推理演算就成了谓词逻辑的基本内容. 这章的讨论,主要是以语义的观点进行的非形式的描述,而严格的形式化的讨论见第6章所建立的公理系统.
数理逻辑 课 程 V.
1.4 全称量词与存在量词.
2 需求供給與均衡.
第4章 动量定理 §4.1 动量守恒定律与动量定理 孤立体系与动量守恒定律
1.4 全称量词与存在量词 第一课时 池州一中 周卉.
1.4 全称量词与存在量词.
含有一个量词的命题 的否定 单位:知源中学 高二数学组
提昇教師專業會議(華人社區) 「教師專業行為表現」專題討論 學生和家長眼中的教師專業行為 日期:2005年10月29日 地點:香港教育學院C-Lp-01室 主講 :香港教育工作者聯會 韓湛恩老師.
3-3 随机误差的正态分布 一、 频率分布 在相同条件下对某样品中镍的质量分数(%)进行重复测定,得到90个测定值如下:
高中数学 选修2-2  最大值与最小值 江宁高中 申广超.
一、格 格的定义,最大元,最小元,有界格,有补格 子格(是格不一定是子格), 给定Hasse图,判断是否分配格,布尔格
Presentation transcript:

第十九章 谓词逻辑

§1 谓词代数 一、项与原子公式 一数的平方与一数的平方根之和大于0”。 命题涉及3个个体对象:两个不确定数,x1,x2 一个常数0,用c1表示; 涉及3个函数,两个一元运算(即平方与平方根),分别记为f1(1),f1(2), 求和运算则是二元运算,用f2(1)表示; 最后,还有一个关于数的二元关系“大于”,用R2(1)表示。 命题表示成R2(1)(f2(1)(f1(1)(x1),f1(2)(x2)),c1)。 这个命题是否正确,取决于对x1,x2所作的赋值。 若x1,x2都是非负实数且至少有一个不为0,则命题正确 若x1,x2都为0,则命题不正确。

通过分解命题可以发现,命题的内部结构包含了下述内容: (1)一些个体对象及对它们进行的某些运算; (2)关于这些对象的一个关系。

定义19.1:由表示某种不确定的可列个个体对象全体所组成的集合称为个体变元集,记为X={x1,…,xn,…},这里xi称为个体变元,用来表示不确定的个体对象。由表示某种确定的个体对象全体所组成的集合称为个体常元集,它是可列集或有限集,也可以是空集,记为C= {c1,…,cn,…},这里ci称为个体常元,用来表示某个确定的个体对象。

,这里Tn={fni|ar(fni)=n}, 并且|Tn|≤0(故|T(1)|≤0),由定理19.1,可构造X∪C上的自由T(1)-代数I。当T(1)=时,I=X∪C;当T(1),I= , 其中I0=X∪C (这是因为T0=),I1={(f1i,xj)|f1iT1,xjX}∪{(f1i,cj)|f1iT1,cjC} ∪(f2i,xj,xk)|f2iT2,xj,xkX} ∪(f2i,xj,ck)|f2iT2,xjX,ckC} ∪(f2i,cj,xk)|f2iT2,xkX,cjC} ∪(f2i,cj,ck)|f2iT2,cj,ckC}∪ ∪(fki,y1,y2,yk)|fkiTk,yiX∪C}∪

随着n的增大In将更为复杂。 在I上定义运算fki:Ik→I,使得fki(a1,,ak)=(fki,a1,,ak),这里ajI (j=1,,k),即fki为I上的第i个k元运算。 定义19.2:X∪C上的自由T(1)-代数I称为项集,I中的每个元素称为项,不含个体变元的项称为闭项,I上的代数运算fni称为第i个n元函数词。如果X∪C,T(1)可列,项集I也是可列集。

例:设C=,T=({f11,f21|ar(f11)=1, ar(f21)=2,求I0,I1,I2,

集上的所有n元关系,即Rn ={Rni|ar(Rni)=n} 定义19.4:对任意的RniRnR,称I上的n元关系Rni(t1, ,tn)为I上的原子公式(特别地,R0i就是原子命题公式),这里t1, ,tnI,Rni称为第i个n元谓词。基于关系集R的所有I上的原子公式全体称为I的原子公式集,记为Y。 原子公式集Y是可列集。 C=, T(1)=,R=R0(这里R0为0元关系集)时,原子公式就是命题逻辑中的命题变元即原子命题。

二、谓词代数 例:设A={1,…,100},对于命题“A中所有数都大于0”. ci表示数字i,R2i表示二元关系“大于”, 命题形式化地表示为: R2i(c1,0)…R2i(c100,0)。 当A为正实数集时,就不能用上述方式表示。为此引进记号xR2i(x,0)来表示上面的命题。这里x称为全称量词。

注意:x中的x只是虚设的,xR2i(x,0)并不依赖于x,事实上也可用yR2i(y,0)表示上述命题。 对于命题“对所有的x,使得有p(x)就必有q(x)”,可表示为x (p(x)→q(x))。 设A={-2,-1,0,1,2},对于命题“在A中必存在大于0的数”, 令ci表示数字i,R2(1)表示二元关系“大于”,则命题可形式化地表示为: R2(1)(c-2,0)R2(1)(c-1,0)R2(1)(c0,0) R2(1)(c1,0)R2(1)(c2,0)。

当A为实数集时,就不能用上述方式表示 引进记号xR2(1)(x,0)来表示上面的命题。这里x称为存在量词。要注意的是,在x中的x只是虚设的,xR2(1)(x,0)并不依赖于x,事实上也可用yR2(1)(y,0)表示上述命题。 存在量词与全称量词有联系。 对命题“不存在x具有性质p”, 可表示为(xp(x)), 也可表示为x(p(x))。

因此x和x有相同的含义,所以在构造模型时,就不需要包括存在量词,而只要定义x=x。 谓词代数建立在原子公式集Y上,并且谓词代数P(Y)除了必须是 {F, →}-代数外,还必须使个体变元集X中的每个个体变元x,都有函数x:P(Y)→P(Y)。

定义19.5:原子公式集(作为生成元集) Y={Rn(t1, ,tn)|RnR,tiI, 1i n}上关于类型{F,→,x|xX}的自由代数称为谓词代数,记为P(Y),P(Y)中的元素称为谓词合式公式,因此P(Y)也称为谓词公式集。这里F是0元运算,→为二元运算,而x则是一元运算。

与命题代数类似,可利用F,→和x来定义一元运算和x以及其它二元运算, , ,现定义如下:

定义19.6:在谓词合式公式q=xp(这里表示或)中,称p为x的辖域。p中x的出现称为x在q中的约束出现。p中不是约束出现的其它变元的出现称为变元在q中的自由出现。如果变元x在q中约束出现,则称x是q中的约束变元。如果变元x在q中自由出现,则称x是q中的自由变元。 q中自由出现的个体变元全体构成的集合用var(q)表示,若var(q)=,则称q为闭式,此时q中无自由变元。 x可能既是自由变元,又是约束变元。

对于AP(Y),A中所有公式的自由变元全体构成的集合用var(A)来表示。 例:指出下列谓词公式中,量词的辖域,个体变元的自由出现和约束出现: (1)x(R11(x)→yR21(x,y)) (2)x(xR11(x)→R21(x,y))→R22(x,y) 解:在(1)中,量词y的辖域是R21(x,y),量词x的辖域是R11(x)→yR21(x,y),x的两次出现都是约束出现,y也是约束出现的,x和y都是约束变元,是闭式

(2)x(xR11(x)→R21(x,y))→R22(x,y) 在(2)中,x的辖域是R11(x),x的辖域是xR11(x)→R21(x,y)。

定义19.7:设p(x)是P(Y)中谓词合式公式,x是其自由变元之一,t(z)是项,z 代表t中的任一个个体变元。当x不出现在p的z的辖域内,则称t对于p中的x是自由的,否则就称t对于p中的x是不自由的。 当t代入p(x)中的x而得p(t(z))时,z应是p的自由变元,但如果x出现在p的z的辖域内,z就成为p(t(z))中的约束变元 这时t对于p中的x是不自由的,变元的性质就完全不同了,这在语义解释时即可发现。

例:在x1R21(x1,x2)→x3R22(x3,x1)中,项f21(x1,x3)对自由变元x1,x2都是不自由的;

约定:用p(x)或p表示P(Y)中的元素(即谓词合式公式) p(x)并不意味着x在p(x)中是自由出现的,x可以不自由出现,甚至不出现。 用p(t)表示由项t去替换p(x)中所有自由出现的x所得到的结果。 例:p(x2)=x1R21(x1,x2)→x3R22(x3,x1) p(f22(x2,x3))=x1R21(x1, f22(x2,x3))→ x3R22(x3,x1) p(x1)=x1R21(x1,x2)→x3R22(x3,x1) p(f11(x2))=x1R21(x1, x2))→ x3R22(x3,f11(x2))

定义19.8:设pP(Y),p的量词深度和层次分别用d(p)和l(p)表示,定义为: (i)d(F)=l(F)=d(q)=l(q)=0,q是P(Y)中的原子公式。 (ii)d(p1→p2)=max{d(p1),d(p2)}, l(p1→ p2)=1+max{ l(p1),l(p2)}。

作业:P256 1,2,6,7,8