李宏毅專題 Track A, B, C 的時間、地點開學前通知 深度學習 暑期訓練 (2016) 李宏毅專題 Track A, B, C 的時間、地點開學前通知
作業繳交 四個作業 因為是暑假,所以並不強迫繳交 請加入 FB 社團「深度學習暑期訓練 (2016)」 建議修李宏毅專題的同學如果對deep learning 沒有概念 的話一定要做 等一下會講作業大概的內容 都很簡單 作業詳細內容和做法提示預計下周二(8/09)公告在社團上 會使用 keras 這套工具 (歡迎自學 Tensorflow )
學習教材 「資料科學愛好者年會」六小時演講錄影 嚴禁外流
學習教材 Lecture 1 深度學習簡介 Lecture 2 深度學習技巧 Lecture 3 Convolutional Neural Network (CNN) 和 Recurrent Neural Network (RNN) Lecture 4 深度學習應用與展望 投影片: http://www.slideshare.net/tw_dsconf/ss-62245351 (可公開)
助教 作業一: 盧柏儒 作業二: 黃邦齊 作業三: 李致緯 作業四: 萬家宏 其他助教:莊舜博、鍾佩宏、張瓊之、楊棋宇 作業問題在社團上討論
工作站 專題工作站 在週四 (8/04) 中午前以下 google doc 登記 下週二前(8/09)開帳號 如果每組自己有 linux 系統會比較快樂 如果每組自己有 GPU 會更快樂
作業說明
Machine Learning You said “Hello” Learning ...... “Hi” “How are you” “Good bye” You write the program for learning. A large amount of audio data
Machine Learning This is “cat” Learning ...... “monkey” “cat” “dog” You write the program for learning. A large amount of images
Machine Learning ≈ Looking for a Function Speech Recognition Image Recognition Playing Go Dialogue System “How are you” “Cat” “5-5” (next move) “Hi” “Hello” (what the user said) (system response)
Framework Model Image Recognition: “cat” A set of function “cat” “money” Repeat again “dot” “snake”
Framework Model Supervised Learning Image Recognition: “cat” A set of function Model Better! Goodness of function f Repeat again Supervised Learning Training Data function input: function output: “monkey” “cat” “dog”
Pick the “Best” Function Image Recognition: Framework “cat” A set of function Neural Network Training Testing Model “cat” Step 1 Goodness of function f Using Pick the “Best” Function Repeat again Step 2 Step 3 Training Data “monkey” “cat” “dog”
Deep means many hidden layers Neural Network neuron Input Layer 1 …… Layer 2 …… Layer L …… Output …… y1 …… y2 …… …… You can connect the neurons by other ways you like How many layer is deep? CNN just another way to connect the neuros. You can always connect the neurons in your own way. “+” is ignored Each dimension corresponds to a digit (10 dimension is needed) …… yM Input Layer Output Layer Hidden Layers Deep means many hidden layers
作業一 教材: lecture 1, lecture 2 Task 1 “5” “0” “4” “1” basic:higher than a specific accuracy (等助教公布) option:analyze the output of each layer
作業一 教材: lecture 1, lecture 2 Task 2 Network 政治 體育 政治 財經 http://top-breaking-news.com/ 體育 政治 財經 basic:higher than a specific accuracy (等助教公布) option:analyze the output of each layer
作業一 教材: lecture 1, lecture 2 More reference: Example code of task 1: https://github.com/fchollet/keras/blob/master/example s/mnist_mlp.py Example code of task 2: https://github.com/fchollet/keras/blob/master/example s/reuters_mlp.py Neural Networks and Deep Learning http://neuralnetworksanddeeplearning.com/ Chapter 1 - 3
作業二 教材: lecture 3 – Convolutional Neural Network Image Recognition “monkey” “monkey” Network “cat” “cat” “dog” “dog”
作業二 教材: lecture 3 – Convolutional Neural Network Basic:higher than a specific accuracy (等助教公 布) option:analyze the functionality of “filter” More Reference: Example code: https://github.com/fchollet/keras/blob/master/example s/cifar10_cnn.py http://cs231n.github.io/convolutional-networks/ Neural Networks and Deep Learning (Chapter 6)
作業三 教材: lecture 3 – Recurrent neural network Machine learns human language Machine writes documents The life is ……. You do not have to teach machine grammars ……. Basic: Let machine generate an English sentence Option: Let machine generate a Chinese sentence
作業三 教材: lecture 3 – Recurrent neural network Machine learns human language More reference Example code: https://github.com/fchollet/keras/blob/master/ examples/lstm_text_generation.py http://karpathy.github.io/2015/05/21/rnn- effectiveness/ http://colah.github.io/posts/2015-08- Understanding-LSTMs/
作業四 教材: lecture 4 Auto-encoder: unsupervised learning NN Encoder code Basic: visualize the “code”. Does different digits represent by different “code”? NN Decoder code Option: Given a “code”, can machine write a digit?
作業四 教材: lecture 4 Auto-encoder: unsupervised learning More reference: https://blog.keras.io/building-autoencoders-in- keras.html Advanced: Auto-Encoding Variational Bayes, https://arxiv.org/abs/1312.6114 Generative Adversarial Networks, http://arxiv.org/abs/1406.2661 Replacing “digits” with “images”
Have Fun!