概 率 统 计 主讲教师 叶宏 山东大学数学院.

Slides:



Advertisements
Similar presentations
渡黑水溝 郁永河. 2 戎克船:是明末清初時期往返兩岸的主要交通工具 ∗ 1. 關於台灣的開發歷史,我們到底了解多少呢?不妨試著說出 就我們所知有關台灣開發史的故事、小說、電影、音樂與大 家分享。 ∗ 2. 什麼是黑水溝?黑水溝為什麼會成為大陸移民渡海來臺時最 大的威脅? ∗ 3. 有聽過「六死三留一回頭」、「有唐山公,無唐山嬤」這兩.
Advertisements

1 §2.2 离 散 型 随 机 变 量 §2.1 随 机 变 量 的 概 念 §2.3 超几何分布 · 二项分布 · 泊松分布 1. “0-1” 分布 ( 两点分布 ) 3. 二项分布 4. Poisson 分布 2. 超几何分布 n →∞ , N→∞ , (x = 0, 1, 2, , n) (x.
第一章 、随机事件与概率 1.1 、随机事件 1.2 、随机事件的概率 1.3 、随机事件概率的计算 1.4 、伯努利概型.
随机变量及其概率分布 第二章 离散型随机变量及其分布律 正态分布 连续型随机变量及其分布律 随机变量函数的分布.
1 概率论与数理统计第 9 讲 本幻灯片可在如下网站下载: www. 应用数学.cn.
第三章 多维随机变量及其分布 3.1 二维随机变量 3.2 边缘分布 3.3 条件分布 3.4 随机变量的独立性
窦娥冤 关汉卿 感天动地 元·关汉卿.
1.4 古典概型(等可能概型) 1.古典概型 2.典型例题 3. 小结.
知其不可而为之.
一、平面点集 定义: x、y ---自变量,u ---因变量. 点集 E ---定义域, --- 值域.
概率论与数理统计 课件制作:应用数学系 概率统计课程组.
第2章 随机变量及其分布 2.1 随机变量及其分布函数 2.2 离散型随机变量及其分布律 2.3 几种常见的离散型分布
中国画家协会理事、安徽省美术家协会会员、 工艺美术师、黄山市邮协常务理事余承平主讲
第四章 多维随机变量及其分布.
第二章 语音 第六节 音变 轻 声1.
管理学基本知识.
汉字的构造.
概率论与 数理统计 高教自考复习 总第十四讲.
诵读欣赏 古代诗词三首.
滁州学院首届微课程教学设计竞赛 课程名称:高等数学 主讲人:胡贝贝 数学与金融学院.
08-09冬季学期 概率论与数理统计 姜旭峰,胡玉磊.
孟子名言 1. 幼吾幼,以及人之幼。 2.天时不如地利, 。 3. ,威武不能屈。 4.得道者多助, 。 5.穷则独善其身, 。 6.
寡人之于国也 《孟子》.
马说 韩愈.
概率论与数理统计.
第二章 随机变量及其分布 关键词: 随机变量 概率分布函数 离散型随机变量 连续型随机变量 随机变量的函数.
你会选择? 为 什 么 ? 官员 演员 医 生 教师 律师 修鞋匠 清洁工 军人.
主要内容 § 3.1 多维随机变量及联合分布 联合分布函里数 联合分布律 联合概率密度 § 3.2 二维随机变量的边缘分布
拾貳、 教育行政 一、教育行政的意義 教育行政,可視為國家對教育事務的管理 ,以增進教育效果。 教育行政,乃是一利用有限資源在教育參
課程銜接 九年一貫暫行綱要( )  九年一貫課程綱要( ) 國立台南大學數學教育系 謝 堅.
2.4 二元一次方程组的应用(1).
贴近教学 服务师生 方便老师.
六年级 语文 下册 第四单元 指尖的世界.
(浙教版)四年级品德与社会下册 共同生活的世界 第四单元 世界之窗 第二课时.
村 居 草长莺飞二月天, 拂堤杨柳醉春烟。 儿童散学归来早, 忙趁东风放纸鸢。.
第四章 随机变量的数字特征 第一节 数学期望 第二节 方差 第三节 协方差及相关系数 第四节 矩、协方差矩阵.
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
例1 :甲击中的环数; X :乙击中的环数; Y 平较高? 试问哪一个人的射击水 : 的射击水平由下表给出 甲、乙两人射击,他们
西师大版语文五年级上册第七单元 心田上的百合花.
本次课讲授:第二章第十一节,第十二节,第三章第一节, 下次课讲第三章第二节,第三节,第四节; 下次上课时交作业P29—P30
高中语文复习 成语的运用 江西省泰和中学 曾剑红.
数据统计与分析 秦 猛 南京大学物理系 手机: 第十讲 数据统计与分析 秦 猛 南京大学物理系 办公室:唐仲英楼A 手机:
概 率 统 计 主讲教师 叶宏 山东大学数学院.
连续型随机变量及其概率密度 一、概率密度的概念与性质 二、常见连续型随机变量的分布 三、小结.
习题 一、概率论 1.已知随机事件A,B,C满足 在下列三种情况下,计算 (1)A,B,C相互独立 (2)A,B独立,A,C互不相容
抽样和抽样分布 基本计算 Sampling & Sampling distribution
概 率 论.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
应用概率统计 主讲:刘剑平.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
第四章 随机变量的数字特征 我们知道,随机变量的分布列或概率密度,全面地描述了随机变量的统计规律.但在许多实际问题中,这样的全面描述并不使人感到方便. 已知一只母鸡的年产蛋量是一个随机变量,如果要比较两个品种的母鸡的年产蛋量,通常只要比较这两个品种的母鸡的年产蛋量的平均值就可以了.平均值大就意味着这个品种的母鸡的产蛋量高.如果不去比较它们的平均值,而只看它们的分布列,虽然全面,却使人不得要领,既难以掌握,又难以迅速地作出判断.
在第一章中,我们介绍了条件概率的概念 . 在事件B发生的条件下事件A发生的条件概率 推广到随机变量
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
第三章 多元随机变量及其分布 关键词:二元随机变量 联合分布 边际分布 条件分布 随机变量的独立性 随机变量函数的分布.
第三章 随机变量的数字特征 (一)基本内容 一、一维随机变量的数学期望 定义1:设X是一离散型随机变量,其分布列为:
第二章 随机变量及其分布 关键词: 随机变量 概率分布函数 离散型随机变量 连续型随机变量 随机变量的函数.
第 四 章 迴歸分析應注意之事項.
第三章 多维随机变量及其分布 第一节 二维随机变量 第二节 边缘分布 第三节 条件分布 第四节 相互独立的随机变量
第四节 随机变量函数的概率分布 X 是分布已知的随机变量,g ( · ) 是一个已知 的连续函数,如何求随机变量 Y =g(X ) 的分布?
第一部分:概率 产生随机样本:对分布采样 均匀分布 其他分布 伪随机数 很多统计软件包中都有此工具 如在Matlab中:rand
§5.2 抽样分布   确定统计量的分布——抽样分布,是数理统计的基本问题之一.采用求随机向量的函数的分布的方法可得到抽样分布.由于样本容量一般不止2或 3(甚至还可能是随机的),故计算往往很复杂,有时还需要特殊技巧或特殊工具.   由于正态总体是最常见的总体,故本节介绍的几个抽样分布均对正态总体而言.
Xián 伯 牙 绝 弦 安徽淮南市八公山区第二小学 陈燕朵.
2019/5/20 第三节 高阶导数 1.
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
定义 设连续型随机变量 概率密度为 分布函数是 特别地, 其概率密度为 一、正态分布的相关内容:.
难点:连续变量函数分布与二维连续变量分布
寡人之于国也 《孟子》.
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
§4.1数学期望.
用加減消去法解一元二次聯立方程式 台北縣立中山國中 第二團隊.
Presentation transcript:

概 率 统 计 主讲教师 叶宏 山东大学数学院

§3.2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度

边缘分布 边缘分布也称为边沿分布或边际分布

二维随机变量的边缘分布函数 由联合分布函数 边缘分布函数, 逆不真. x y x x y y

例 设随机变量(X ,Y )的联合分布函数为 其中A , B , C 为常数. 确定A , B , C ; 求X 和Y 的边缘分布函数; 求P (X > 2).

解 (1) (2)

(3)

二维离散型随机变量的边缘分布 由联合分布律可确定边缘分布律

联合分布律 及边缘分布律 X Y p• j p•1 x1 xi yj y1 pi• p1• 1

例(P55.1) 设随机变量 X 在 1,2,3三个数中等可能地取值,另一个随机变量 Y 在1~X 中等可能地取一整数值,试求 X, Y 的边缘分布律。

1

例 箱子里装有4只白球和2只黑球,在其中随 机地取两次,每次取一只。考虑两种试验: (1)有放回抽样,(2)不放回抽样。 我们定义随机变量 X,Y 如下,写出X和Y的联 合分布律和边缘分布律 。

(1)有放回抽样 Y X 0 1 1 1

(2)不放回抽样 Y X 0 1 1 1

二维连续型随机变量的边缘分布 已知联合密度可以求得边缘密度

y o 1 x 2 D

y o 1 x 2 D

y o 1 x 2 D

结 论 (一) 结 论 (二)