XI. Hilbert Huang Transform (HHT)

Slides:



Advertisements
Similar presentations
1 時 頻 分 析 近 年 來 的 發 展時 頻 分 析 近 年 來 的 發 展 丁 建 均 國立台灣大學電信工程學研究所 Recent Development of Time-Frequency Analysis.
Advertisements

1 Lecture 5 Properties of LTI Systems The Solution of LCCDE.
國立交通大學應用數學系 數學建模與科學計算研究所 簡 介. 隨著科技的日新月異,人類為追求完美的生活,其 所面臨的科學與工程問題也日趨複雜,舉凡天氣的 預測、飛機的設計、生物醫學中的神經網路、奈米 材料的研發、衍生性金融產品的定價、甚至交通流 量的監測等問題,透過「數學建模」的量化過程, 再配合以「科學計算」的方式去模擬現象並嘗試尋.
663 Chapter 14 Integral Transform Method Integral transform 可以表示成如下的積分式的 transform  kernel Laplace transform is one of the integral transform 本章討論的 integral.
Final Review Chapter 1 Discrete-time signal and system 1. 模拟信号数字化过程的原理框图 使用 ADC 变换器对连续信号进行采样的过程 使用 ADC 变换器对连续信号进行采样的过程 x(t) Analog.
SPSS统计软件的使用方法基础 主讲人:宋振世 (闵行校区) 电 话:
資料探勘(Data Mining)及其應用之介紹
-Artificial Neural Network- Hopfield Neural Network(HNN) 朝陽科技大學 資訊管理系 李麗華 教授.

Differential Equations (DE)
Understanding Interest Rates
XI. Hilbert Huang Transform (HHT)
Leftmost Longest Regular Expression Matching in Reconfigurable Logic
Time and frequency domain
3-3 Modeling with Systems of DEs
Euler’s method of construction of the Exponential function
-Artificial Neural Network- Adaline & Madaline
AN INTRODUCTION TO OFDM
IV. Implementation IV-A Method 1: Direct Implementation 以 STFT 為例
Applications of Digital Signal Processing
期末考的範圍遠遠多於期中考,要了解的定理和觀念也非常多
Population proportion and sample proportion
V. Homomorphic Signal Processing
Empirical Mode Decomposition
模式识别 Pattern Recognition
Differential Equations (DE)
二、現代的加解密法:RSA 非對稱式密碼系統的一種。
Digital Terrain Modeling
Chap. 9 Sinusoidal Steady-State Analysis
Chapter 4 歸納(Induction)與遞迴(Recursion)
微積分網路教學課程 應用統計學系 周 章.
非線性規劃 Nonlinear Programming
On Some Fuzzy Optimization Problems
期末考的範圍遠遠多於期中考,要了解的定理和觀念也非常多
Properties of Continuous probability distributions
X. Other Applications of Time-Frequency Analysis
HLA - Time Management 陳昱豪.
II. Short-time Fourier Transform
主讲人: 吕敏 { } Spring 2016,USTC 算法基础 主讲人: 吕敏 { } Spring 2016,USTC.
Network Planning Algorithms in CATV Networks
本章大綱 2.1 The Limit of a Function函數的極限 2.2 Limit Laws極限的性質
第三章 项目设定.
Fundamentals of Physics 8/e 31 - Alternating Fields and Current
VI. Brief Introduction for Acoustics
Interval Estimation區間估計
消費者偏好與效用概念.
A high payload data hiding scheme based on modified AMBTC technique
Advanced Digital Signal Processing 高等數位訊號處理
XIV. Orthogonal Transform and Multiplexing
Mechanics Exercise Class Ⅰ
VII. Data Compression (A)
BORROWING SUBTRACTION WITHIN 20
3.5 Region Filling Region Filling is a process of “coloring in” a definite image area or region. 2019/4/19.
線性規劃模式 Linear Programming Models
通信工程专业英语 Lesson 13 Phase-Locked Loops 第13课 锁相环
Course 10 削減與搜尋 Prune and Search
Q & A.
Efficient Query Relaxation for Complex Relationship Search on Graph Data 李舒馨
96學年度第二學期電機系教學助理課後輔導進度表(三)(查堂重點)
 隐式欧拉法 /* implicit Euler method */
IV. Implementation IV-A Method 1: Direct Implementation 以 STFT 為例
HHT 2009/01/19 showmin.
本講義為使用「訊號與系統,王小川編寫,全華圖書公司出版」之輔助教材
II. Short-time Fourier Transform
Surface wave dispersion measurements using Hilbert-Huang Transform
簡單迴歸分析與相關分析 莊文忠 副教授 世新大學行政管理學系 計量分析一(莊文忠副教授) 2019/8/3.
Principle and application of optical information technology
Gaussian Process Ruohua Shi Meeting
Hybrid fractal zerotree wavelet image coding
Presentation transcript:

XI. Hilbert Huang Transform (HHT) Proposed by 黃鍔院士 (AD. 1998 ) 黃鍔院士的生平可參考 http://sec.ncu.edu.tw/E-News/ detail.php?SelectPaperPK=14&SelectReportPK=115&Pic=15 References [1] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. Lond. A, vol. 454, pp. 903-995, 1998. [2] N. E. Huang and S. Shen, Hilbert-Huang Transform and Its Applications, World Scientific, Singapore, 2005. (PS: 謝謝 2007 年修課的趙逸群同學和王文阜同學)

11-A The Origin of the Concept 另一種分析 instantaneous frequency 的方式: Hilbert transform  Hilbert transform or H(f) j f-axis f = 0 -j

Applications of the Hilbert Transform  analytic signal  edge detection  another way to define the instantaneous frequency: where Example:

Problem of using Hilbert transforms to determine the instantaneous frequency: This method is only good for cosine and sine functions with single component. Not suitable for (1) complex function (2) non-sinusoid-like function (3) multiple components Moreover,  has multiple solutions. Example:

 Hilbert-Huang transform 的基本精神: 先將一個信號分成多個 sinusoid-like components + trend (和 Fourier analysis 不同的地方在於,這些 sinusoid-like components 的 period 和 amplitude 可以不是固定的) 再運用 Hilbert transform (或 STFT,number of zero crossings) 來分析每個 components 的 instantaneous frequency 完全不需用到 Fourier transform

11-B Intrinsic Mode Function (IMF) Amplitude and frequency can vary with time. 但要滿足 local maximums & local minimums (1) The number of extremes and the number of zero-crossings must either equal or differ at most by one. (2) At any point, the mean value of the envelope defined by the local maxima and the envelope defined by the local minima is near to zero.

11-C Procedure of the Hilbert Huang Transform Steps 1~8 are called Empirical Mode Decomposition (EMD) (Step 1) Initial: y(t) = x(t), (x(t) is the input) n = 1, k = 1 (Step 2) Find the local peaks -1 1 2 y(t)

(Step 3) Connect local peaks -1 1 2 IMF 1; iteration 0 通常使用 B-spline,尤其是 cubic B-spline 來連接 (參考附錄十一)

(Step 4) Find the local dips (Step 5) Connect the local dips -1 1 2 IMF 1; iteration 0

(Step 6-1) Compute the mean 1 2 IMF 1; iteration 0 (pink line)

(Step 6-2) Compute the residue -1.5 -1 -0.5 0.5 1 1.5

(Step 7) Check whether hk(t) is an intrinsic mode function (IMF) (1) 檢查是否 local maximums 皆大於 0 local minimums 皆小於 0 (2) 上封包: u1(t), 下封包: u0(t) 檢查是否 for all t If they are satisfied (or k ≧ K), set cn(t) = hk(t) and continue to Step 8 cn(t) is the nth IMF of x(t). If not, set y(t) = hk(t), k = k + 1, and repeat Steps 2~6 (為了避免無止盡的迴圈,可以定 k 的上限 K)

x0(t) has only 0 or 1 extreme? (Step 8) Calculate and check whether x0(t) is a function with no more than one extreme point. If not, set n = n+1, y(t) = x0(t) and repeat Steps 2~7 If so, the empirical mode decomposition is completed. Set y(t) = x(t) Step 8 Step 7 Y x0(t) has only 0 or 1 extreme? hk(t) is an IMF? Y Step 9 Step 1 Steps 2~6 y(t) = hk(t) N trend y(t) = x0(t) N

(Step 9) Find the instantaneous frequency for each IMF cs(t) (s = 1, 2, …, n). Method 1: Using the Hilbert transform Method 2: Calculating the STFT for cs(t). Method 3: Furthermore, we can also calculate the instantaneous frequency from the number of zero-crossings directly. instantaneous frequency Fs(t) of cs(t)

Technique Problems of the Hilbert Huang Transform 目前尚未有一致的方法,可行的方式有 (1) 只使用非邊界的 extreme points (2) 將最左、最右的點當成是 extreme points (3) 預測邊界之外的 extreme points 的位置和大小 (B) Noise 的問題: 先用 pre-filter 來處理

最左、最右的點是否要當成是 extreme points

11-D Example Example 1 After Step 6

IMF1 IMF2 x0(t)

Example 2 hum signal IMF1 IMF2

IMF3 IMF4 IMF5 IMF6

IMF7 IMF8 IMF9 IMF10

IMF11 x0(t)

11-E Comparison (1) 避免了複雜的數學理論分析 (2) 可以找到一個 function 的「趨勢」 (3) 和其他的時頻分析一樣,可以分析頻率會隨著時間而改變的信號 (4) 適合於 Climate analysis Economical data Geology Acoustics Music signal

 Conclusion 當信號含有「趨勢」 或是由少數幾個 sinusoid functions 所組合而成,而且這些sinusoid functions 的 amplitudes 相差懸殊時,可以用 HHT 來分析

附錄十一 Interpolation and the B-Spline Suppose that the sampling points are t1, t2, t3, …, tN and we have known the values of x(t) at these sampling points. There are several ways for interpolation. (1) The simplest way: Using the straight lines (i.e., linear interpolation) t1 t2 t3 t4

(2) Lagrange interpolation  指的是連乘符號, (3) Polynomial interpolation solve a1, a2, a3, ……, aN from

(4) Lowpass Filter Interpolation 適用於 sampling interval 為固定的情形 tn+1  tn = t for all n discrete time Fourier transform lowpass mask X1(f) X (f) x(tn) inverse discrete time Fourier transform x(t)

(5) B-Spline Interpolation B-spline 簡稱為 spline for tn < t < tn+1 otherwise m = 1: linear B-spline m = 2: quadratic B-spline m = 3: cubic B-spline (通常使用)

In Matlab,the command“spline” can be used for spline interpolation (Note: In the command, the cubic B-spline is used) Example: Generating a sine-like spline curve and samples it over a finer mesh: x = 0:1:10; % original sampling points y = sin(x); xx = 0:0.1:10; % new sampling points yy = spline(x,y,xx); plot(x,y,'o',xx,yy)