第2课时 类比推理.

Slides:



Advertisements
Similar presentations
做中国梦 走特色路 —— 宁波电大业余党校时政课 林志标 四川雅安地震 2013 年 4 月 20 日 8 时 02 分四川省雅安市芦山县(北纬 30.3, 东 经 )发生 7.0 级地震。震源深度 13 公里。震中距成都约 100 公里。成都、重庆及陕西的宝鸡、汉中、安康等地均有较.
Advertisements

海南省疾病预防控制中心. (一)基本情况  工作用房面积: ㎡,其中实验室使用面积为 6500 ㎡  中心定编 213 人,其中全额预算编制 193 人,自筹编制 20 人  现有在职职工 320 名,其中专业技术人员占 84.3% 。 人性化的办公场所实验室区域 一、海南省疾病预防控制中心概况.
輔導處八月份主管會報 報告人 : 洪自強. 輔導組本月工作 【行政文書】 建置 100 學年度工作資料夾 擬訂 100 學年度第一學期行事曆 【認輔工作】 匯整 100 學年度續接個案資料 輔導教師持續關心責任班級高關懷個案 統整國小轉銜個案資料 (3 位 ) 【通報案件】 通報性騷擾案件 1 件.
美丽的鹿城 —— 包头 包头简介 包头旅游景区 包头美食. 包 头, 中国内蒙古自治区第一大城市,又称鹿城、草原钢城。 随着包头钢铁(集团)有限责任公司和包头稀土研究院的建成与 发展,这里又被称作稀土之都。 包头稀土研究院 包 头位于内蒙古自治区中部,东与呼和浩特市相邻,西与巴彦 淖尔盟市连接 ,北与蒙古国接壤.
H7N9 禽流感. H7N9 流感确诊病例主要表现 1 、起病急; 2 、病程早期均有高热 (38 ℃以上 ) ,伴咳嗽等呼 吸道感染症状,起病 5-7 天出现呼吸困难; 3 、典 型的病毒性肺炎,重症肺炎并进行性加重,部分 病例可迅速发展为急性呼吸窘迫综合症并死亡。
人感染H7N9禽流感医院感染 预防与控制技术指南
传染病预检分诊工作要求 发热门诊管理要求.
第二节 交通运输布局变化的影响 北京市第十一中学 张芊丽 2008年1月.
第五十章 旅外华人现代汉语文学 回目录.
自然與生活科技領域 國中1上 第2單元 生命的維持(一) 生物體的協調 6-1 神經系統 6-2 內分泌系統.
区位因素分析专题.
大洋洲.
我的家乡 南通 ….
第6章 应收应付款管理.
文题: (1)请以“从此,我(他/她)不再________”为题,写一篇不少于600字的记叙文。 (2)以“做人从_____开始” 为题,写一篇不少于600字的文章。 (3)请以“你还会____吗”为题写一篇600字以上的文章,文体不限,诗歌除外。
第八章   股利分配 本章主要介绍了影响股利政策的因素、主要的股利政策、股利支付的程序及方式、 股票分割及股票回购等问题。通过本章的学习,要求掌握不同股利政策的具体做法,掌握股票股利的作用,了解股票分割和股票回购的涵义及影响。
§2 线性空间的定义与简单性质 主要内容 引例 线性空间的定义 线性空间的简单性质 目录 下页 返回 结束.
青岛, 一座有故事的城市…… 刘瑞昌 青岛理工大学汽车与交通学院 2013年12月.
文明史范式.
当代 国 际 关 系(案例6) 冷战时期美苏关系的演变.
做好学校甲型H1N1流感防控工作 确保师生身体健康
H7N9禽流感相关知识
金陵科技学院·思想政治理论课教学部 思想道德修养与法律基础 “基础”教研室.
甘肃4班面试专项练习4 应急应变 主讲: 凌宇 时间:6月3日.
脾胃病的饮食调理和中医治疗 贵州省中医院脾胃病肝病内科 医生:朱国琪.
只要大家共同努力,禽流感是可以預防的疾病。
菏泽市初中历史水平考试备考研讨与交流 菏泽市教研室 张红霞.
教育老兵教學經驗談 何進財 曾任 教育部社教司司長 訓委會常務委員 中央警官學校兼任講師 台北市立師範學院兼任副教授 國立陽明大學兼任副教授
第八章 海岸地貌 海南三亚天涯海角.
马克思主义基本原理概论 上海理工大学社会科学学院 张欢欢.
国王赏麦的故事.
不会宽容人的人, 是不配受到别人的宽容的。 贝尔奈.
复习回顾 a a×a a×a×a a a×a×a= a×a= 1.如图,边长为a厘米的正方形的面积 为 平方厘米。
七年级历史上册 第二单元 国家产生和社会的变革.
第四章 会计职业道德 第三节 会计职业道德教育.
歡迎蒞臨 三年八班大家族 導師:陳冠諠老師 16個帥氣寶貝 16個漂亮寶貝.
第四节 世界的聚落 鸭暖中学地理备课组 学习目标 聚落的主要形式 了解 聚落的形成和发展 世界文化遗产 探索 聚落的形成和发展 环保意识 增强 人地协调发展的环境观.
纳税是有收入的成年人的事,与我们中学生无关。
我的自述 —— 近代中国民族资本主义的发展历程。
小组成员 杨云、王雯、曾明发 刘凤、祝会、陈丹凤.
人力資源管理委員會 主席:魏麗香部長 執秘:董家檥督導 委員:林姿伶HN、黃士豪HN、潘秋華HN 林素琴專師組長、卓惠瑄、張維恩、王孟萱、
第五組 幼兒安全與衛生教育 組員: 譚郁馨 張喻晴 沈恩華
●车辆消防安全知识——讲座 车辆消防安全知识 2017/3/17 巫山县公安消防大队 1.
省示范校建设项目验收工作汇报 赵小平
婴幼儿意外伤害预防与急救 上海人口与发展研究中心母婴健康工作室 原上海长海医院儿科 方 凤 宝优网:
新课程高考数学试卷特点分析及复习备考 刘延彬 年3月6日 合肥.
有趣的文字 口 天 天 口 口 木 木 口 下 上 士 干.
2013年普通高等学校招生全国统一 考试(四川卷)考试说明解读
普通高等教育 “十五”国家级规划教材 新世纪全国高等中医药院校规划教材
学习目标: 1、掌握田径运动竞赛的主要规则和裁判方法。 2、通过教学与实践,初步具备小型田径运动会的裁判工作能力。
岗位分析与岗位评价 阿里巧巧
98年桃園縣農村再生總體規劃 社區輔導提案研習營
复习专题: 协调发展 社会和谐 学校:上师大附属外国语中学 说课者:李瑞英.
第三章 企业资信评估 第一节 企业资信评估概述 一、企业资信评估的含义
战 后 国 际 关 系 专题五:冷战时期美苏关系的演变 政治学与行政管理系.
10.2 分子动理论的初步知识 蒙城县乐土中学 袁亮.
《中华人民共和国传染病防治法》部分知识 河西区卫生局.
五、学习方法及应考对策 (一)学习方法 1.保证复习时间,吃透教材:上课之前应该对课程相关内容进行预习,把不理解的问题记录下来,带着问题听课。考试之前务必把课本看3遍以上,第一遍一定要精读,最好能做笔记,边读边记,不要快,要记牢。第二、三遍可以查缺补漏型的看,通过做题目看书,加深课本印象。 2.加强概念、理论性内容的重复记忆:概念、理论性内容一般比较抽象,所以在理解的基础上一定要重复记忆,在接受辅导之后,再加以重点记忆,以便及时巩固所学内容,切忌走马观花似的复习,既浪费时间,效果也不好。
建議題.
甲型H1N1流感预防常识 北仑区疾病预防控制中心.
等差数列的应用 虎山中学高一文科备课组 黄小辉.
第5课时 数列的综合应用.
貨幣需求與貨幣市場的均衡.
商業行為成立的要件 動動腦 Q 請試著判斷下列何者為商業行為? 請試著判斷下列何者為商業行為?.
2.1 合情推理与演绎推理  2.1.1 合情推理.
認識H1N1 盧亞人醫院 感控護士 劉秀屏.
數學遊戲二 大象轉彎.
新高中通識教育科課堂的 教學規劃和應試訓練
106年免試入學第一次模擬 選填重要日程表說明 1.106年1月10日中午12時~106年1月16日中午12時完成第一次模擬
認識﹋禽流感*.
Presentation transcript:

第2课时 类比推理

【课标要求】 1.了解合情推理的含义,能利用归纳和类比等进行简单的推理. 2.了解合情推理在数学发现中的作用. 【核心扫描】 1.对合情推理含义的理解.(重点) 2.能利用归纳和类比进行简单的推理.(重点)

1.类比推理的概念 由两类对象具有某些 特征和其中一类对象的某些 ,推出另一类对象也具有这些特征.简言之,类比推理是由特殊到特殊的推理. 类似 已知特征

想一想:类比推理的结论一定正确吗? 提示 类比推理是从人们已经掌握了的事物的特征,推测正在被研究中的事物的特征,所以类比推理的结果具有猜测性,不一定可靠.

2.合情推理 (1)定义 归纳推理和类比推理都是根据已有事实,经过 、 、 、 ,再进行 、 ,然后提出 的推理,我们把它们统称为合情推理. (2)合情推理的过程 观察 分析 比较 联想 归纳 类比 猜想

想一想:由合情推理得到的结论可靠吗? 提示 一般来说,由合情推理所获得的结论,仅仅是一种猜想,未必可靠,例如,费马猜想就被数学家欧拉推翻了.

名师点睛 1.类比推理 (1)类比推理的一般步骤 ①找出两类事物之间的相似性或一致性. ②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题. (2)类比推理的特点 ①类比是从人们已经掌握了的事物的属性,推测正在研究中的事物的属性,以旧认识为基础,类比出新结果. ②类比是从一种事物的特殊属性推测另一种事物的特殊属性.如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠.

③类比的结果是猜测性的,不一定正确.但它却具有发现的功能. (3)类比推理的适用前提 ①运用类比推理的前提是两类对象在某些性质上有相似性或一致性,关键是把这些相似性或一致性确切地表述出来,再由一类对象具有的特性去推断另一类对象也可能具有此类特性. ②运用类比推理常常先要寻找合适的类比对象.

2.归纳推理与类比推理的区别与联系 区别:归纳推理是由特殊到一般的推理;类比推理是由个别到个别的推理或是由一般到一般的推理. 联系:在前提为真时,归纳推理与类比推理的结论都可真可假.

题型一 类比推理在数列中的应用 【例1】 已知数列a1、a2,…,a30,其中a1、a2,…,a10是首项为1,公差为1的等差数列;a10,a11,…,a20是公差为d的等差数列;a20,a21,…,a30是公差为d2的等差数列(d≠0). (1)若a20=40,求d; (2)试写出a30关于d的关系式; (3)续写已知数列,使得a30,a31,…,a40是公差为d3的等差数列,…,依次类推,把已知数列推广为无穷数列.提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论? [思路探索] 利用类比的思想求解.

规律方法 数学中的许多定理、公式和法则都可以用类比的方法进行证明和应用,而且许多例题、习题也都可以用类比的方法引出新的知识和题目,通过进一步论证得到新的结果,由此可知,类比推理为我们研究问题提供了一盏明灯.

【变式1】 根据等差数列{an}的性质,通过类比写出等比数列{bn}的对应性质. 等差数列{an}(公差为d) 等比数列{bn}(公比为q) ① 若m+n=p+q=2t,则am+an=ap+aq=2at ② ar,ar+m,ar+2m,…构成公差为md的等差数列 ③ Sn为前n项和,则Sn,S2n-Sn,S3n-S2n,…构成公差为n2d的等差数列 ④ 2an+1=an+an+2

解 将等差数列与等比数列的运算进行类比,得 等差数列{an}(公差为d) 等比数列{bn}(公比为q) ① 若m+n=p+q=2t,则am+an=ap+aq=2at 若m+n=p+q=2t,则aman=apaq=a ② ar,ar+m,ar+2m,…构成公差为md的等差数列 br,br+m,br+2m,…构成公比为qm的等比数列

题型二 类比推理在几何中的应用 【例2】 如图所示,在△ABC中,射影定理可 表示为a=b·cos C+c·cos B,其中a,b,c分 别为角A,B,C的对边,类比上述定理,写出 对空间四面体性质的猜想. [思路探索]

解 如右图所示,在四面体PABC中,设S1,S2, S3,S分别表示△PAB,△PBC,△PCA,△ ABC的面积,α,β,γ依次表示面PAB, 面PBC,面PCA与底面ABC所成二面角的大小. 我们猜想射影定理类比推理到三维空间,其表现形式应为S=S1·cos α+S2·cos β+S3·cos γ.

规律方法 (1)类比推理的基本原则是根据当前问题的需要,选择适当的类比对象,可以从几何元素的数目、位置关系、度量等方面入手.由平面中的相关结论可以类比得到空间中的相关结论. (2)平面图形与空间图形类比 平面图形 空间图形 点 线 面 边长 面积 体积 线线角 二面角 三角形 四面体

题型三 类比推理的应用 【例3】 三角形与四面体有下列相似性质: (1)三角形是平面内由直线段围成的最简单的封闭图形;四面体是空间中由三角形围成的最简单的封闭图形. (2)三角形可以看作是由一条线段所在直线外一点与这条线段的两个端点的连线所围成的图形;四面体可以看作是由三角形所在平面外一点与这个三角形三个顶点的连线所围成的图形. 通过类比推理,根据三角形的性质推测空间四面体的性质填写下表:

三角形 四面体 三角形的两边之和大于第三边 三角形的中位线的长等于第三边长的一半,且平行于第三边 三角形的三条内角平分线交于一点,且这个点是三角形内切圆的圆心

三角形和四面体分别是平面图形和空间图形,三角形的边对应四面体的面,即平面的线类比到空间为面.三角形的中位线对应四面体的中位面,三角形的内角对应四面体的二面角,三角形的内切圆对应四面体的内切球.

[规范解答] 三角形 四面体 三角形的两边之和大于第三边 四面体的三个面的面积之和大于第四个面的面积 三角形的中位线的长等于第三边长的一半,且平行于第三边 四面体的中位面的面积等于第四个面的面积的,且中位面平行于第四个面 三角形的三条内角平分线交于一点,且这个点是三角形内切圆的圆心 四面体的六个二面角的平分面交于一点,且这个点是四面体内切球的球心

【题后反思】 将平面几何中的三角形、长方形、圆、面积等和立体几何中的三棱锥、长方体、球、体积等进行类比,是解决和处理立体几何问题的重要方法.

【变式3】 类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列哪些性质,你认为比较恰当的是 (  ). ①各棱长相等,同一顶点上的任两条棱的夹角都相等; ②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等. A.① B.①② C.①②③ D.③

解析 由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,叫类比推理,上述三个结论均符合推理结论,故均正确. 答案 C

方法技巧 数形结合思想在合情推理中的应用 本节关于数形结合思想的考查主要是利用图形归纳、类比一般规 律,从而作出猜想. 【示例】 如图所示是树形图,第一层是一条与水平线垂直的线段,长度为1;第二层在第一层线段的前端作两条与该线段均成135°角的线段,长度为其一半;第三层按第二层的方法在每一条线段的前端生成两条线段;重复前面的作法作图至第n层.设树形图的第n层的最高点到水平线的距离为第n层树形图的高度.

(1)求第三层及第四层树形图的高度H3、H4; (2)求第n层树形图的高度Hn. [思路分析] 求出前4层的竖直高度,找出规律,进行猜想.

单击此处进入 活页规范训练