將定出這些構件承受彎曲所產生之應力。先討論如何繪出對於樑或軸之剪力及彎矩圖 (the shear and moment diagrams)。如同正向力及扭矩圖,剪力及彎矩圖提供定出構件中最大剪力及彎矩之有效方法,並確知這些極值發生在何處。一旦求得某截面內彎矩 (the internal moment),則可定出彎曲應力 (the bending stress)。考慮一具對稱截面,且由均質線彈性 (linear-elastic) 。將討論包含非對稱彎曲及複合材料構成之構件。而其他曲型構件、應力集中、非彈性彎曲及殘留應力亦將予以考慮。
一細長且承受垂直於縱軸向負載之構件稱其為樑 (beams) 。 第6章 彎 曲 208 6.1 剪力及彎矩圖 一細長且承受垂直於縱軸向負載之構件稱其為樑 (beams) 。
通常工程師用其決定樑間何處採用強化材料或沿樑長變化點處樑之尺寸比例。 必需定出介於任兩不連續負載間樑各段之剪力及彎矩函數。 第6章 彎 曲 208 將討論樑之設計方法。 此將先定出樑中最大剪力及彎矩。方法一為將 V 及 M 表示為沿樑軸向任意位置 x 之函數。然後可繪出剪力及彎矩函數之圖形,稱之為剪力及彎矩圖。此時 V 及 M 之最大值可由這些圖求得。 通常工程師用其決定樑間何處採用強化材料或沿樑長變化點處樑之尺寸比例。 必需定出介於任兩不連續負載間樑各段之剪力及彎矩函數。
儘管慣用符號之選擇乃為任意的,吾人將採用普遍用於工程實例之方法,並示於圖6-3。 第6章 彎 曲 208 樑之慣用符號 儘管慣用符號之選擇乃為任意的,吾人將採用普遍用於工程實例之方法,並示於圖6-3。
樑為長又直且承受垂直於縱軸向的構件。依其支撐方式可作一分類,即簡支承、懸臂支承或外伸支承。 第6章 彎 曲 209 樑為長又直且承受垂直於縱軸向的構件。依其支撐方式可作一分類,即簡支承、懸臂支承或外伸支承。 為了適當地設計樑,瞭解沿軸向之剪力和彎矩的變化以便發掘產生更大值的位置是很重要的。 藉由建立剪力和彎矩的慣用符號,樑中的剪力和彎矩可以由位置 x 的函數來求得,進而畫出剪力圖和彎矩圖。
繪出樑之自由體圖並求解所有支承反力。將所有力量分解為與樑軸垂直及平行之分量。 剪力及彎矩函數 第6章 彎 曲 209 下列步驟提供求解樑之剪力及彎矩函數與繪剪力及彎矩圖。 支承反力 繪出樑之自由體圖並求解所有支承反力。將所有力量分解為與樑軸垂直及平行之分量。 剪力及彎矩函數 選定座標位置以便各座標擴及樑上介於集中力,力偶,或分佈負載不連續處區間。各座標原點可設定在任意適當點,但經常定在樑之左端點。 在各座標位置處切下一與樑軸垂直之截面及繪出其中一段之自由體圖。依據圖6-3所示之慣用符號,將 V 及M 以正的方向示出。
剪力及彎矩圖 209 利用垂直樑之軸向的力總合可以求得剪力。 利用以截斷端為支點的彎矩總和可以求得力矩。 利用垂直樑之軸向的力總合可以求得剪力。 利用以截斷端為支點的彎矩總和可以求得力矩。 剪力及彎矩圖 繪剪力函數 (V 對 x ) 及彎矩函數( M 對 x ) 圖。若描述 V 及 M 函數之數值為正,則繪於 x 軸上方,反之負值繪於 x 軸下方。 通常將剪力及彎矩圖直接繪於樑之自由體圖下方係較方便的。 209 第6章 彎 曲
第6章 彎 曲 209 6-1
第6章 彎 曲 209
第6章 彎 曲 210
第6章 彎 曲 210
第6章 彎 曲 210 6-2
第6章 彎 曲 211
第6章 彎 曲 211
第6章 彎 曲 211
第6章 彎 曲 211 6-3
第6章 彎 曲 211
第6章 彎 曲 212
第6章 彎 曲 212
第6章 彎 曲 212 6-4
第6章 彎 曲 213
第6章 彎 曲 212
第6章 彎 曲 213