斐波那契數列.

Slides:



Advertisements
Similar presentations
食育 菜單 1. 義大利麵 本日冠軍 2. 咖哩飯 NO.1 卡布奇諾咖啡 3. 乾煎香腸 NO.2 香草烤雞腿 4. 台式鹽酥雞 NO.3 蝦捲 6. 卡布奇諾咖啡 7. 香草烤雞腿 8. 蝦捲.
Advertisements

幼儿意外事故的预防和急救 第五章. 第一节 安全教育和意外事故 第一节 安全教育和意外事故 预防 预防 第二节 常用的护理技术 第二节 常用的护理技术 第三节 常用的急救技术 第三节 常用的急救技术.
富饶的宜昌. 小组合作学习一  说说家乡的物产有哪些。  1 、先独立思考。  2 、小组讨论, 2 号做记录。  3 、展示交流。
医学蠕虫 土源性蠕虫:发育过程中不需要中 间宿主 生物源性蠕虫:发育过程中需要中 间宿主 第三十六章 线 虫.
第五节 函数的微分 二、微分的几何意义 三、基本初等函数的微分公式与微分运算法则 四、微分在近似计算中的应用 一、微分的定义.
颅骨及其连接 解剖学教研室 陈通. 一、颅的骨性构成:共 23 块。 1. 脑颅骨: 8 块。 成对 -- 顶骨、颞骨 不成对 -- 额骨、筛骨、蝶骨、枕骨.
人的头部结构 —— 头骨 一、头骨的形体结构 二、头骨的解剖结构. 头部的形体特征及其面部的协调 起伏,即是通过脑颅部与面颅部, 以及额、颧、上颌、下颌构成的四 个体块相互穿插关系构成的。 一、头骨的形体结构 头部的骨架形状 —— 立方体 1 、脑颅和面颅两部分。 脑颅呈卵圆形脑颅呈卵圆形,占头部的.
人的头部结构 —— 头骨 一、头骨的形体结构 二、头骨的解剖结构. 头部的形体特征及其面部的协调 起伏,即是通过脑颅部与面颅部, 以及额、颧、上颌、下颌构成的四 个体块相互穿插关系构成的。 一、头骨的形体结构 头部的骨架形状 —— 立方体 1 、脑颅和面颅两部分。 脑颅呈卵圆形脑颅呈卵圆形,占头部的.
食管癌病人的护理 上海交通大学护理学院 曹伟新 曹伟新. 学习目标 识记 识记 能正确叙述食管癌的病因和诱因 能正确叙述食管癌的病因和诱因 能简要概述常用于食管癌辅助检查 能简要概述常用于食管癌辅助检查 理解 理解 能正确描述食管癌病人的常见症状和体征 能正确描述食管癌病人的常见症状和体征 能简要概述食管癌的治疗原则.
第四章 原腔动物 又称假体腔动物:原体腔;完全消化系 统;体表具角质膜;原肾排泄系统;雌 雄异体。.
腹部仰卧前后位 (正位) 腹部仰卧前后位(正位) 摄影目的:观察尿路或腹腔脏器结石、 钙化及腹部包块、异物存留.
第 2 节人体和动物体的组成 江阴市长寿中学 徐利国. 细胞是怎样构成人体和动物体的? 器 官 由上皮组织、结 缔组织、肌肉组 织和神经组织按 照一定的次序构 成,并且以其中 一种组织为主, 能完成一定功能 的结构。
巴洛克风格 与 荷兰市民绘画. 巴洛克 一词源于葡萄牙语,意为 “ 畸形的 珍珠 ” 。它是崇尚古典美术的学者, 对不遵守古典美术规则的艺术风 格的一种贬称。巴洛克艺术发源 地是 17 世纪初的意大利,后传播 到比利时,西班牙等国。它表现 在建筑、雕刻、绘画等方面。
第二章:大学生身心发展特点 本章重点: 大学生的生理发展特点 大学生心理发展基本特征 大学生心理矛盾及其对策.
生殖器、肛门与直肠检查 生殖器、肛门和直肠检查是全面体检的 一部分,有时对临床诊断具有重要意义。但 某些病人不易接受此项检查,因此对有指征 的病人应耐心说明检查的目的、方法和重要 性,务必做到全面检查。被检查者若为女性, 男性医生必须有女医护人员或家属陪同检查。
變數與函數 大綱 : 對應關係 函數 函數值 顧震宇 台灣數位學習科技股份有限公司. 對應關係 蛋餅飯糰土司漢堡咖啡奶茶 25 元 30 元 25 元 35 元 25 元 20 元 顧震宇 老師 台灣數位學習科技股份有限公司 變數與函數 下表是早餐店價格表的一部分: 蛋餅 飯糰 土司 漢堡 咖啡 奶茶.
《伤寒论》学习提要. ※ 要求背诵的原文 ( 共 120 条 )
中医外科学多媒体课件 --中医外科学总论 河南中医学院第一临床医学院外科学科 1 中医外科学 范围、命名及术语.
景观规划的分类设计——居住区景观环境规划设计
芳香植物.
第七章习题课 向量代数与空间解析几何.
妇科病史及检查 山东大学第二医院 朱 琳.
中藥如何提升免疫力 補氣藥=黃耆、人參、白朮等。 補血藥=當歸、川芎、龍眼肉等。 補陰藥=地黃、麥門冬、何首烏。
基本礼仪 一、礼仪基本原则 二、形象礼仪 三、交谈礼仪 四、礼貌用语 五、行为礼仪 六、礼仪细节.
商品及人物拍摄技法.
地理高考备考习题选取的原则与技巧 乐山外国语学校 万里历
行管专科“社会调查”和“毕业论文”的说明
磁浮列車創作大賽.
请说出牛顿第一定律的内容。.
中藥如何提升免疫力 補氣藥=黃耆、人參、白朮等。 補血藥=當歸、川芎、龍眼肉等。 補陰藥=地黃、麥門冬、何首烏。
浅谈心理知识 在思品课堂中的应用 朱台中学 周新静.
腧穴的强身保健法 福建省人民医院 针灸康复科 林源主任医师.
中医外科学多媒体课件 --皮肤病 风热疮 河南中医学院第一临床医学院.
飛行的原理(1) 竹蜻蜓製作 指導老師:蘇葦晟老師.
餐饮服务与管理 第五章 餐饮原料管理.
中国经济史 第四章 古代社会的财政、货币与金融 中国经济史.
完美的比例 教材設計者:利澤國中劉凱元老師.
第二讲 氏族时代.
中国工艺美术史 主讲教师:康小花.
武进区三河口中学欢迎您.
第二章 青铜时代.
三基三严培训 麻醉部分 铁岭市中心医院麻醉科:王守田 二0一三年九月十八日.
青年教师业务技能竞赛暨“教坛新秀”评选活动
第四节 重积分的应用 一、平面区域的面积 二、立体体积 三、曲面的面积 四、物体的质量 五、物体的质心 六、物体的转动惯量 七、物体的引力
每周干家务活的时间 你每周干家务活大约有多长时间? 你们班同学每周干家务活的平均时间是多少 ?
中國人物畫 李錦葉 麥麗鳳 2002.
第四章 數列與級數 4-1 等差數列與級數 4-2 等比數列與級數 4-3 無窮等比級數 下一頁 總目錄.
实验六、植物的花 实验目的: 了解花的组成和结构;.
第二章 骨连结 第一节 概述 纤维连结 骨连结 软骨连结 滑膜关节 一、纤维连结——韧带连结 二、软骨连结——骨性结合 1、纤维连结 2、软骨连结 附 3、骨性结合.
浙江广播电视大学 开放教育行政管理专业 社会调查 浙江广播电视大学文法学院.
浅谈中考透镜专题复习.
第二讲 树木的枝芽特性.
为思维而教,为思维而学 赵思林教授 四川省中小学教学名师讲师团 送教下乡培训项目*高中数学.
分析比较: 东西方美术作品 表现手法的不同.
学前思考 1.心脏的形态和位置,心脏位于胸腔内,稍偏左。 2.心腔的基本结构,左心房、左心室、右心房、右心室。
太和殿--穹隆圆顶.
美麗的花 花九 作著:五年二班 謝如亭 花的顏色、形狀、大小、以 及構造是植物在分類及鑑定的重 要依據之一。美麗的花,將世界
乘用车巡展 ——陕西天锐汽车销售服务有限公司 2016年6月01日.
6B冊 趣味活動 認識立體圖形中的頂、棱和面 柱體的頂、棱和底邊 錐體的頂、棱和底邊.
費波那契 606 蕭楚恒.
斐波那契數與黃金比值 將兩個連續的斐波那契數相比: 1,1,2,3,5,8,13,21,34, 55,89,144,233,377,
) 正方形有4條邊。 所以只要知道其中一條邊的長度,便可計算出正方形的周界。 2) 正方形每條邊的長度都相同。
5上 14 梯形的面積 7. 圖一是由兩個大小相同的梯形和一個 拼 砌而成的 。 小正方形 大正方形 圖二 圖一
體積.
達文西密碼 達文西(Leonardo da Vinci, ) 作者:丹‧布朗(Dan Brown) 第八章
畢加索的工人朋友 按鍵換頁 音樂:愛的記憶!.
• • • • ? §4.2 力矩 转动定律 转动惯量 一. 力矩 力 改变质点的运动状态 质点获得加速度 刚体获得角加速度
4.4 照相机与眼球 视力矫正 张家港市第六中学 王秋晓. 4.4 照相机与眼球 视力矫正 张家港市第六中学 王秋晓.
习题课 第十章 重积分的 计算 及应用 一、 重积分计算的基本方法 二、重积分计算的基本技巧 三、重积分的应用.
玻璃吊飾 五年級.
Presentation transcript:

斐波那契數列

一個很有趣的數學問題: 假設每一對新生的小兔子,一個月後便會長大,且每一個月都生一對小兔子。已知每次新生的一對兔子都是一雄一雌,而所有兔子都沒有死去,且隔代的兔子不會互相交配。 若現有一對小兔子,問一年後共有兔子多小對呢?

月數 1 2 3 4 5 6 7 8 9 10 11 12 13 小兔子 對數 1 1 1 2 3 5 8 13 21 34 55 89 大兔子 對數 1 1 2 3 5 8 13 21 34 55 89 144 兔子總 對數 1 1 2 3 5 8 13 21 34 55 89 144 233 一年後兔子的總數為 233 對

斐波那契數列 兔子的總對數是 1,1 ,2 ,3 , 5 , 8 , …… , 斐波那契數列(Finonnaci sequence) 自第三項開始,每一項都是前兩項的和 數列中的每一項則稱為 斐波那契數(Fibonnaci Number) 以符號 Fn 表示。 F1 = F2 = 1 ,而 Fn = Fn-1 + Fn-2 (n>2)

斐波那契數與黃金比值 將兩個連續的斐波那契數相比: 1,1,2,3,5,8,13,21,34, 55,89,144,233,377, 610,987,…… 由此可觀察到: 此數也就是黃金比 另一說法

斐波那契數與黃金比值 將兩個連續的斐波那契數相比: 1,1,2,3,5,8,13,21,34, 55,89,144,233,377, 610,987,…… 由此可觀察到: 此數也是黃金比

斐波那契數與黃金比值 由此, 暗示了無論(尤其是在自然現象中)在那裡出現黃金比值,也就會出現斐波那契數, 反之亦然。

斐波那契數列與自然界的關係 向日葵的種子 植物的枝節 菠蘿的表皮 花瓣的數目 人類的身體 蜂房 其他例子

向日葵的種子 綠色表示按順時針排列的種子 紅色表示按逆時針排列的種子

向日葵的種子 植物學家發現: 某種向日葵的種子是按兩組螺線排列,其數目往往是連續的斐波那契數 。 普通大小的向日葵:34條順時針螺線   55條逆時針螺線 較大的向日葵: 89條順時針螺線        144條逆時針螺線

植物的分枝 2 3 5 8 13 2 3 5 8 斐波那契數 Back

菠蘿的表皮 菠蘿的中心軸 : Z 軸 垂直於Z軸的平面: XOY 量度表皮上每一個六角形 的中心與平面XOY的距離 便會發現……

菠蘿的表皮 其中三個方向是按等差數列 排列的: 公差 5 8 13 0,5,10,15,20,… 0,8,16,24,32,… 0,13,26,39,52,… 三個連續的斐波那契數!

人類的身體 0.618 0.618 1 1 1 0.618

蜂房問題

蜂房問題 路線總數 6 5 4 3 2 1 蜂房號碼 1 2 3 5 8 13 21 所以當蜂房號碼是n, 其路線總數有Fn+2

花瓣的數目 花瓣的數目是 : 3 3 8 13 3 5 21 5 5 5 8 13 21 21 斐波那契數!

其他例子 鋼琴例子 帕斯卡三角形 蒙娜麗莎的畫像 穿高跟鞋的效應

鋼琴例子 在一個音階中: 白色的鍵數為 8 黑色的鍵數為 5 兩個連續的斐波那契數!

帕斯卡三角形 斐波那契數列!

蒙娜麗莎的畫像 綠線與紅線的長度比為0.618  : 長 為0.618 長 :  為1.618

穿高跟鞋的效應 假設某女士的原本軀幹 與身高比為 0.6 (i.e. x : l = 0.60 ) 若所穿的高跟鞋的高度為d 新的軀幹與高度比為: (x + d) : (l + d) = ( 0.6 l + d) : (l + d)

穿高跟鞋的效應 例:某位女士的身高為160 cm (約5呎3寸) 0.60 160 0.606 0.60 160 0.612 0.60 原本軀幹與身高比值 ( x : l) 身高 (l cm) 高跟鞋高度 (d cm) 穿了高跟鞋後的新比值 (0.6 l +d):(l +d) 0.60 160 2.54 (1 吋) 0.606 0.60 160 5.08 (2吋) 0.612 0.60 160 7.62 (3吋) 0.618 0.618 穿高跟鞋使腳長與身高的比值趨向黃金比 由此可見,女士們相信穿高跟鞋使她們更美是有 數學根據的!