ARTIFICIAL INTELLIGENCE

Slides:



Advertisements
Similar presentations
Warming up. Heavy! Difficult! Hard! Tired! 1. Easy! 2. Fast! 3. Free!
Advertisements

1. 甚麼是人工智能 ? 甚麼是人工智能 ? 2. 強人工智能 - 弱人工智能 強人工智能 - 弱人工智能 3. 實現人工智能的必要條件 實現人工智能的必要條件 4. 人工智能的例子 人工智能的例子 5. 虛擬真實 虛擬真實 6. 感想 感想.
TOEFL Speaking ----Q1&Q2 坚果托福 秀文. 评分标准评分标准 Volume Grammar Fluency Logic / Organization Lexical ability Pronunciation.
高考英语短文改错 试题解析 内蒙古师范大学外国语学院 方芳 2011 年 3 月. 一、短文改错设疑方式 此 题要求改正所给短文中的错误。对标有 题号的每一行做出判断: 1) 如无错误,在该行右边横线上画一个 ( );如有错误(每行只有一个错误), 则按下列情况改正:
MMN Lab 未來教室與雲端化學習 Yueh-Min Huang Department of Engineering Science, National Cheng Kung University, Tainan, Taiwan
高中英语教材分析与教学建议 福建教育学院外语研修部特级教师:周大明. 课程目录  一、理论创新与教材发展  二、现行教材的理论基础和编写体系  三、图式理论与 “ 话题教学 ”  四、课例分析与教学建议.
胸痛中心的时间流程管理 上海胸科医院 方唯一.
从维纳的《控制论》到现代智能科学的崛起 ——试论现代智能科学技术的基础理论建设
人工智能的昨天、今天和明天 崔 林 中央广播电视大学工学院.
提纲 主要参考书目 AI的基础及萌芽 AI的创立及发展 AI的主要研究范围 国外著名的AI研究机构 AI在中国 AI的最新动态
IFY Parents Meeting 3 December 年12月3日家长会
2007年8月龙星课程 周源源老师课程体会 包云岗 中科院计算所
國立台灣師範大學 國際人力資源發展研究所 施正屏博士
破舊立新(三) 人生召命的更新 使徒行傳廿六章19-23節.
2012 年下学期 湖南长郡卫星远程学校 制作 13 Unit 4 The next step 年下学期 湖南长郡卫星远程学校 制作 13 Discussion Which university do you want to study at? Have you thought carefully.
真题重现:广东高考中的不定式。 1 (2008年高考题)For example, the proverb,“ plucking up a crop _________(help) it grow ,” is based on the following story… 2 (2007年高考题)While.
都市計畫概論論文概述及評論: 彰化高鐵站區域計畫
统计学习基础 卿来云 中国科学院研究生院信息学院 / 统计对研究的意义:
Unit 3 Time for Class.
Homework 4 an innovative design process model TEAM 7
Unit 4 I used to be afraid of the dark.
Consumer Memory 指導老師 莊勝雄 MA4D0102郭虹汝MA4D0201吳宜臻.
計算方法設計與分析 Design and Analysis of Algorithms 唐傳義
Knowledge Engineering & Artificial Intelligence Lab (知識工程與人工智慧)
Linguistics and language teaching
Logistics 物流 昭安國際物流園區 總經理 曾玉勤.
Decision Support System (靜宜資管楊子青)
作者 :Pawan Sinha, Benjamin Balas, Yuri Ostrovsky, Richard Russell
Mechanisms and Machine Theory.
An Introduction to Computer Science (計算機概論)
G10 PARENT MEETING COURSE SELECTION 高一选课家长会 PRESENTED BY B
DSS #1:決策支援系統概論 一、管理與決策制定 二、資訊系統及其演進 三、決策支援系統的定義
Self Knowledge 自我知識 梁益堉 教授 第四單元:
張新仁 教授兼學生事務長 國立高雄師範大學教育系
Summer English and Data Science
This Is English 3 双向视频文稿.
Formal Pivot to both Language and Intelligence in Science
Decision Support System (靜宜資管楊子青)
戴运财 浙江农林大学 1.
IBM SWG Overall Introduction
資料結構 Data Structures Fall 2006, 95學年第一學期 Instructor : 陳宗正.
The Two Faces of Adam Smith Vernon L. Smith
「導論」教學實施規劃 吳正己 國立台灣師範大學 資訊教育研究所.
Georgia Tech Summer Program
虚 拟 仪 器 virtual instrument
突出语篇语境,夯实词汇语法 一模试卷单选完形分析 及相应的二轮复习对策 永嘉罗浮中学 周晓媚.
预立医疗照护计划-在医疗护理活动中的植入
自我介紹 李易如 小c 桃園人 交大運管系 聽音樂、慢跑、旅遊 黃家耀老師lab.
IEEE Computer Society 長亨文化事業有限公司.
兒童與青少年發展概述.
971研究方法課程第六次上課必讀教材導讀 如何提出一個論文題目或研究問題
系统科学与复杂网络初探 刘建国 上海理工大学管理学院
The viewpoint (culture) [观点(文化)]
核心能力 Core competence 什麼是核心能力? 2 如何訂定核心能力? 3 實例:亞利桑那大學 4 應考慮的關鍵問題 5
An organizational learning approach to information systems development
營建管理基本觀念.
李宏毅專題 Track A, B, C 的時間、地點開學前通知
Unit 1 How do you study for a test?
Introduction of this course
(二)盲信号分离.
CONSCIOUS Value-Based Parenting 基于价值的有意识子女教育
數位家庭中的人機介面研究.
11 Overview Cloud Computing 2012 NTHU. CS Che-Rung Lee
Infrastructure as Learning Environment 学习环境的基础结构
Operating System Software School of SCU
991 中大英語自學小組 English Study Group
第一届中国无线射频识别基准测试论坛 暨 备忘录签订仪式 2008年3月1日, 香港科技大学 无线射频识别(RFID)基准测试的挑战
本教學投影片係屬教科書著作之延伸,亦受著作權 法之保護。
Unit 1 Book 8 A land of diversity
Presentation transcript:

ARTIFICIAL INTELLIGENCE 2018/2019 Semester 1 Introduction: Chapter 1

CS410 Course home page: http://bcmi.sjtu.edu.cn/ai/ schedule, lecture notes, tutorials, assignment, grading, office hours, etc. Textbook: S. Russell and P. Norvig Artificial Intelligence: A Modern Approach Prentice Hall, 2010, Second Edition Lecturer: Liqing Zhang Grading: Assignment +Class Test(40%), Projects (20%), Final report (40%)

Course overview Introduction and Agents (chapters 1,2) Search (chapters 3,4,5,6) Logic (chapters 7,8,9) Planning (chapters 11,12) Uncertainty (chapters 13,14) Learning (chapters 18,20) Natural Language Processing (chapter 22,23)

Outline Course overview What is AI? A brief history The state of the art

What is AI? Artificial Intelligence (AI) Intelligent behavior Intelligent behavior in artifacts “Design computer programs to make computers smarter” “Study of how to make computers do things at which, at the moment, people are better” Intelligent behavior Perception, reasoning, learning, decision, communicating, acting in complex environments Long term goals of AI Develop machines that do things as well as humans can or possibly even better Understand intelligent behaviors

What is AI? Can machines think? “Can” “Machine” Depend on the definitions of “machine”, “think”, “can” “Can” Can machines think now or someday? Might machines be able to think theoretically or actually? “Machine” E6 Bacteriophage: Machine made of proteins Searle’s belief Thinking can occur only in very special machines – living ones made of proteins

What is AI? Views of AI fall into four categories: Thinking humanly Thinking rationally Acting humanly Acting rationally The textbook advocates "acting rationally"

Acting humanly: Turing Test Turing (1950) "Computing machinery and intelligence": "Can machines think?"  "Can machines behave intelligently?" Operational test for intelligent behavior: the Imitation Game Predicted that by 2000, a machine might have a 30% chance of fooling a lay person for 5 minutes Suggested major components of AI: knowledge, reasoning, language understanding, learning

Thinking humanly: cognitive modeling 1960s "cognitive revolution": information-processing psychology Requires scientific theories of internal activities of the brain How to validate? Requires 1) Predicting and testing behavior of human subjects (top-down) 2) Direct identification from neurological data (bottom-up) Both approaches (Roughly, Cognitive Science and Cognitive Neuroscience), are now distinct from AI

Thinking rationally: "laws of thought" Aristotle: what are correct arguments/thought processes? Several Greek schools developed various forms of logic: notation and rules of derivation for thoughts; may or may not have proceeded to the idea of mechanization Direct line through mathematics and philosophy to modern AI Problems: Not all intelligent behavior is mediated by logical deliberation What is the purpose of thinking? What thoughts should I have?

Acting rationally: rational agent Rational behavior: doing the right thing The right thing: that which is expected to maximize goal achievement, given the available information Doesn't necessarily involve thinking – e.g., blinking reflex – but thinking should be in the service of rational action

Rational agents An agent is an entity that perceives and acts Abstractly, an agent is a function from percept histories to actions: [f: P*  A] For any given class of environments and tasks, we seek the agent (or class of agents) with the best performance Remark: computational limitations make perfect rationality unachievable  design best program for given machine resources

AI prehistory Philosophy Logic, methods of reasoning, mind as physical system foundations of learning, language, rationality Mathematics Formal representation and proof algorithms, computation, (un)decidability, (in)tractability, probability Economics Utility, Decision theory Neuroscience Physical substrate for mental activity Psychology Phenomena of perception and motor control, experimental techniques Computer Building fast computers engineering Control theory Design systems that maximize an objective function over time Linguistics Knowledge representation, grammar

Abridged history of AI 1943 McCulloch & Pitts: Boolean circuit model of brain 1950 Turing's "Computing Machinery and Intelligence" 1956 Dartmouth meeting: "Artificial Intelligence" adopted 1952—69 Look, Ma, no hands! 1950s Early AI programs, including Samuel's checkers program, Newell & Simon's Logic Theorist, Gelernter's Geometry Engine 1965 Robinson's complete algorithm for logical reasoning 1966—73 AI discovers computational complexity Neural network research almost disappears 1969—79 Early development of knowledge-based systems 1980-- AI becomes an industry 1986-- Neural networks return and became popular 1987-- AI becomes a science 1995-- The emergence of intelligent agents

State of the Art Deep Blue defeated the reigning world chess champion Garry Kasparov in 1997 Proved a mathematical conjecture (Robbins conjecture) unsolved for decades (1996 by W. McCune) No hands across America (driving autonomously 98% of the time from Pittsburgh to San Diego) During the 1991 Gulf War, US forces deployed an AI logistics planning and scheduling program that involved up to 50,000 vehicles, cargo, and people NASA's on-board autonomous planning program controlled the scheduling of operations for a spacecraft Proverb solves crossword puzzles better than most humans

Computer Sci. and Brain Sci. Information Processing in Digital Computer Computing based on Logic CPU and Storage: Separated Data Processing & Storage: Simple  Intelligent Information Processing: Complicated and Slow Cognitive capability: Weak Information Process Mode:  Logic – Information – Statistics Information Processing in the Brain Computing based on Statistics CPU and Storage: Unified Data Processing & Storage: Unknown Intelligent Information Processing: Simple and Fast Cognitive capability: Strong Information Process Mode:    Statistics -concepts-logic

Visual Information Processing Fig.2.29 ‘Where’: the motion and spatial location ‘What’: the detailed features, form, and object identity

Biological Neurons

Challenges

Human Vision (1)

Human Vision (3)

Relax for a while Test:How many human faces in the picture?

人工智能简史 2016 Alpha GO 2012 深度卷积网络, Le Kun 2011 IBM Watson 2005 深度学习, Hinton 1996 Robbins 猜想 1986-神经网络 1965 Robinson‘s 完备算法 1957 感知器, Rosenblatt 1956人工智能定义Dartmouth workshop 1943神经元模型 McCulloch&Pitts

类脑模型进展 CNN, 1998, 2012 RNN, 1982, 2013 Deep learning, 2005, 2009 S. Amari 1967 S. Grossberg Deep learning, 2005, 2009 F. Rosenblatt Hopfield Neural network(1982) The multilayer perceptron(1972) Fukushima, Neocognitron(1980) The perceptron algorithm (1957) McCulloch-Pitts′ neuron model ( 1943 )

深度典型实例 – 图像标注

IBM再次赢得“人机大战” IBM 高调推出超级计算机 Watson,目标是建造一个能与人类回答问题能力匹敌的计算系统,在比赛中,参赛者必须要回答一系列的问题,主要涉及历史,文学,政治,电影,流行文化和科学。 这要求计算机具有足够的速度、精确度和置信度,并且能使用人类的自然语言回答问题。 挑战——回答 Jeopardy 比赛中的题目需要分析人类语言中微妙的含义、讽刺口吻、谜语等,这些通常是人类擅长的方面,一直以来计算机在这方面毫无优势可言。 在美国最受欢迎的智力竞猜节目播放的2011年2月14日-2月16日期间,IBM超级电脑Watson其中击败了两名人类选手,最终获得胜利。

实例分析:AlphaGo 利用深度学习、强化学习,拓展 了机器 “直觉感知”“棋局推理( 全局获胜机会如何)”和“新颖落 子(想人所不敢想)”等能力, 并将记忆人类棋局和自我博弈积 累棋局结合了起来。 全新的复杂问题求解技术路线 学到专家群体的智慧,而不仅仅 是个体专家的智慧 引入深度网络学习棋盘布局 模式 学习专家群体的价值网络 利用强化学习价值网络 利用随机搜索和博弈算法

金融智能:信用卡欺诈检测算法 传统人工之智能方法 新一代人工智能方法 … … 监督学习与无监督学习 数据驱动 统计分析 专家系统方法 (决策树) 神经网络方法 异常检测方法 模糊逻辑方法 … … 新一代人工智能方法 数据驱动 利用深度学习模型正常交易模式和 欺诈模式 利用强化学习方式学习欺诈损失和 检测成本 利用学习正常交易模式的演变,预 测新型可疑欺诈交易

人工智能基本问题 让机器能像人那样理解、思考和学习。AI进步的动力不仅来 自于内部驱动,更来自于信息环境与社会需求等外部驱动。 问题求解与搜索 知识表示与逻辑推理 不确定推理、机器学习 自然语言、计算机视觉、语音识别 人机交互、场景理解、对话交互 多智能体/群体智能 博弈与对策

人工智能:机遇与挑战 场景理解??? 信息感知 知识推理 AI关键技术取得突破 典型应用 深度学习理论重大进展 关键技术突飞猛进 语音识别、图像模式识别 自然语言处理、知识工程 …… 典型应用 计算机围棋(Alpha Go, Learning from Experience/Rules, Value, Policy) 自动驾驶 (Autonomous Vehicles) 医学影像自动诊断(Medical Imaging Diagnosis) 智能客服/智能音箱 …… 重大理论问题与核心技术有待突破(自主学习、知识表示、不确定性推 理、场景理解、智能交互、执行与反馈、群体博弈) 场景理解??? 信息感知 知识推理

Intelligent Systems

Home work To write a short report on your personal interests in the field of AI.

围棋课程设计报告提要 项目任务分工简介 课题实现的技术路线 采用方法简介(除了本课程的算法,是否还采用了其他算法) 实验结果分析 结论与感想 每一个同学在项目分工、工作量分配 课题实现的技术路线 采用方法简介(除了本课程的算法,是否还采用了其他算法) 实验结果分析 结论与感想