细胞分裂的类型 细胞分裂(cell division)可分为无丝分裂(amitosis)、有丝分裂(mitosis)和减数分裂(meiosis)三种类型。 无丝分裂又称为直接分裂,由R. Remark(1841)首次发现于鸡胚血细胞。表现为细胞核伸长,从中部缢缩,然后细胞质分裂,其间不涉及纺锤体形成及染色体变化,故称为无丝分裂。发现于原核生物和很多高等动植物,如植物的胚乳细胞、动物的胎膜,间充组织及肌肉细胞等等。

Slides:



Advertisements
Similar presentations
高三英语有效复习策略 程国学. 一、高考备考的方向把握 1. 认真研究普通高中《英语课程标准》和《福建 省考试说明》关注高考命题原则和发展方向,定 准复习教学起点 1. 认真研究普通高中《英语课程标准》和《福建 省考试说明》关注高考命题原则和发展方向,定 准复习教学起点 一是明确高考英语可能考什么,我们应该怎样准.
Advertisements

考纲研读 语言知识要求 语言运用能力 附录 1: 语音项目表 附录 2: 语法项目表 附录 3: 功能意念项目表 附录 4: 话题项目表 附录 5: 词汇表 听力 阅读 写作 口语.
Chapter 13 Meiosis and Sexual Life Cycles Chapter 14 Mendel and the Gene Idea Chapter 15 The Chromosomal Basis of Inheritance Chapter 16 The Molecular.
健康生活方式之 适当运动. 适当运动的益处  防治代谢综合症  增强心血管功能,预防冠心病  提高人体呼吸系统功能  增强运动系统功能  减轻精神压力  使家庭和睦、社会和谐.
行政院原住民族委員會 法規暨訴願審議委員會 102 年度原住民身分法實例演練講習: 原住民身分認定及救濟程序.
本校自民國 78 年於顏前校長世錫任內創設本系 設立鑑識科學學系大學部,專責鑑識人才之培養, 為目前國內唯一專門培育鑑識科學人才、研究鑑識 科學學術之大學學系,設系剛滿 20 年。自 85 年於姚 前校長高橋任內,設立鑑識科學研究所招收碩士生 ,民國 88 年於謝前校長瑞智任內先後獲內政部、教.
第二节 基因在亲子代间的传递. 1. 什么叫做遗传? 2. 什么叫做性状? 3. 性状是由什么决定的?
新个体新个体 ? 受精卵受精卵 何种分裂 有丝分裂 卵细胞 何种作用 受精作用 精子 何种 分裂 减数 分裂 父方 母方 从细胞水平上来看,人是怎样诞生的? 思考: 1 、你从双亲继承了什么物质? 2 、上图中的数字代表什么?
现场快速检测技术应用实务 浙江省食品药品监督管理局. 危害 来源 食品本身含有,如河豚鱼毒素、组胺等 种养殖过程带入,如农药兽药残留 人为添加,如三聚氰胺、甲醛、罂粟壳等 外界污染,如重金属、真菌毒素等 食品危害来源及分类 危害 分类 物理危害:玻璃、金属、头发丝等 化学危害:农兽残、天然毒素、添加剂等.
生 物 的 新 陈 代 谢生 物 的 新 陈 代 谢 人和动物的三大营养物质代谢. 几点说明 1 、人体内营养物质的来源、去向 三个来源: 食物中 XX 的消化、吸收 自身 XX 分解 其他物质的转化 三个去向: 合成 XX (或贮存) 氧化分解供应能量 转化为其他物质.
第二章:生物科學與食品 第三節:基因改造食品.
第三章 现代教育与人的发展.
第八章 互换的运用.
耳鸣的原因及治疗 耳鸣的相关知识 周敬之整理,制作。.
人和动物体内三大 营养物质的代谢 江苏大丰南中 殷宝宽.
大綱 一、設立科別 二、課程規劃原則 三、科目與學分數表 四、新課綱課程架構 五、新課綱課程規劃 (1)一般科目 (2)專業科目
第21课时 生物圈中的微生物 考 点 聚 焦 专 项 突 破 1.
國民中學 自然與生活科技 第二冊 第3章 生殖 3-1 細胞分裂 3-2 無性生殖 3-3 有性生殖.
社區醫學相關選修~ 社區醫療實務 課程介紹.
第2章 基因和染色体的关系 第1节 减数分裂和受精作用.
学校核心发展力 上海市建平中学 程红兵.
第十章 细胞增殖 狭义的细胞生长:细胞大小的增加 广义的细胞生长:还包括细胞分裂和细胞分化
必修二 生物 (人教版).
想一想 议一议 P74 我们常吃的蘑菇有根、茎、叶吗? 它们的生长是否需要光? 为什么说它们是真菌而不是植物呢?
三次科技革命 学习目标: 1.知道三次科技革命的时间、标志、发源地、理论基础、主要成就、主要特点及影响。 2.培养归纳历史知识的能力
第十二章 细胞的生长和增殖 分裂方式: 有丝分裂(Mitosis) 减数分裂(Meiosis)
Chapter 21 Cell Division 第二十一章 细胞的分裂 医学细胞生物学与遗传学教研室.
第二章 遗传的细胞学基础 授课人:赵雪松 淮北卫生学校.
动物细胞工程 儋州市一中 金兆娜.
实验复习专题 城东中学 刘学琴.
一轮复习 细胞的增值.
模拟 回归 提能 ——最后二十天复习策略 大连市第十二中学 单维霞.
王永慶遺產分配 第三組民法報告 4970T011 劉昭妤 4970T037 吳品怡 4970T090 袁如意
台南在地美食文化介紹 台南市鳳凰城文史協會 理事長 歐財榮.
第四节 地域文化与人口 有儿无女不称心,有女无儿就伤心; 一儿一女不放心,多子多女才舒心。 有权的顶着生,有钱的买着生;
一、作者概說:    王壽來,民國三十八年生,山西省 五臺縣人,中興大學 法律系畢業,美國 喬治城大學碩士、臺灣師範大學 美術研究所碩博士。長期從事文化與外交工作,現任文建會 文化資產總管理處籌備處主任。   王壽來靈感多取自生活經驗,善用中外名言,描繪人生百態。著有《公務員快意人生》、《藝術‧收藏‧我》、《公務員DNA》、《和世界偉人面對面》等書。
病原:痘病毒属于痘病毒科、脊椎动物痘病毒亚科,该亚科现有8个属,各属成员对动物的致病作用有明显的差异,但它们构造差异不大。
寻找生命的螺旋 深圳市育才中学 黄俊芳.
导入新课 波能绕过障碍物产生衍射。既然光也是一种波,为什么在日常生活中难以观察到光的衍射现象呢?.
高中生物学必修Ⅰ 分子与细胞 前 言.
生物體的構造 細胞的構造 物質進出細胞的 方式 從細胞到個體 自然與生活科技領域 國中1上
第六章 科学观察与科学实验.
关注生物技术的 伦理问题.
2015年高考历史质量分析报告 兰州市外国语高级中学 杨彩玲.
第一章 植物细胞和组织 第一节 植物细胞的形态和结构 第二节 植物细胞的繁殖 第三节 细胞的生长和分化 第四节 植物组织和组织系统.
肝功能正常的小三阳注意事项.
突變 突變是指遺傳物質發生改變, 而影響到性狀的表現 例:白化症.
中国矿业大学(北京)副校长 教授 博士生导师 博士
(三)减数分裂(meiosis) (meiosis).
第1章 走近细胞 制作人:周红锳 第1章 .
第五节 细胞的分裂繁殖.
司法机关.
物理学专业 光学实验绪论 主讲人:路莹 洛阳师范学院物理与电子信息学院 2009年3月.
生物五界的分類方式.
细胞与分子生物学实验 细胞与分子生物学教学实验室 分机.
2.1 细胞的结构 2.2 染色体 2.3 染色体的传递(细胞分裂)
第四章 細胞週期 (The Cell Cycle)
2.1 细胞的结构 2.2 染色体 2.3 染色体的传递(细胞分裂)
本著作除另有註明外,採取創用CC「姓名標示-非商業性-相同方式分享」臺灣3.0版授權釋出
淑明女子大學 在哪裡?. 淑明女子大學 在哪裡? 學校週遭 第一次 剛到淑大時?
证书发放工作要点及流程 学院办公室.
人是由什么发育而来的? 一个受精卵.
Radiobiology 放射腫瘤科 黃英彥 醫師 2007/11/09.
第五节 染色质结构和基因转录 一、活性染色质 1、活性染色质具有DNA超敏感位点
非同源染色体:不是同源染色体的两条染色体
3.1 生物的基本單位.
12.4 减数分裂(meiosis) 减数分裂概述 ◆发生分裂的细胞 生殖细胞进行的产生配子的分裂过程,
看圆如何七十二变 微建筑早课.
证据运用 第八章 证据的运用 第一节 证据体系的结构及运用规则.
‘人因罪與神隔絕’ 左邊代表每一個人像你和我。 黑暗代表我們的罪。 聖經說: 世人都犯了罪,虧缺了神的榮耀。 (羅3:23)
Presentation transcript:

细胞分裂的类型 细胞分裂(cell division)可分为无丝分裂(amitosis)、有丝分裂(mitosis)和减数分裂(meiosis)三种类型。 无丝分裂又称为直接分裂,由R. Remark(1841)首次发现于鸡胚血细胞。表现为细胞核伸长,从中部缢缩,然后细胞质分裂,其间不涉及纺锤体形成及染色体变化,故称为无丝分裂。发现于原核生物和很多高等动植物,如植物的胚乳细胞、动物的胎膜,间充组织及肌肉细胞等等。

二、有丝分裂 有丝分裂,又称为间接分裂,由W. Fleming (1882)年发现于动物及E. Strasburger(1880)年发现于植物。特点是有纺锤体和染色体出现,子染色体被平均分配到子细胞,这种分裂方式普遍见于高等动植物。 有丝分裂过程是一个连续的过程,为了便于描述人为地划分为六个时期:间期(interphase)、前期(prophase)、前中期(premetaphase)、中期(metaphase)、后期(anaphase)和末期(telophase)。其中,间期包括G1期、S期和G2期,主要进行DNA复制等准备工作。

前期两个中心体向两级移动 中期的光镜和电镜 前中期和中期 后期姊妹染色体分离 细胞有丝分裂周期 末期

细胞分裂周期

(一)有丝分裂过程 1,前期 前期的主要事件是:①染色质凝缩,②分裂极确立与纺锤体开始形成,③核仁解体,④核膜消失。 前期最显著的特征是染色质通过螺旋化和折叠,变短变粗,形成光学显微镜下可以分辨的染色体,每条染色体包含2个染色单体。 早在S期两个中心粒已完成复制,在前期移向两极,两对中心粒之间形成纺锤体微管,当核膜解体时,两对中心粒已到达两极,并在两者之间形成纺锤体,纺锤体微管包括: ①着丝点微管(kinetochore mt):由中心体发出,连接在着丝点上,负责将染色体牵引到纺锤体上,着丝点上具有马达蛋白。

②星体微管(astral mt):由中心体向外放射出,末端结合有分子马达,负责两极的分离,同时确定纺锤体纵轴的方向。 ③极体微管(polar mt或overlap mt):由中心体发出,在纺锤体中部重叠,重叠部位结合有分子马达,负责将两极推开。 有两类马达蛋白参与染色体和分裂极的分离,一类是动力蛋白(dynein),另一类是驱动蛋白(kinesin)。 植物没有中心粒和星体,其纺锤体叫作无星纺锤体,分裂极的确定机理尚不明确。

2,前中期 指由核膜解体到染色体排列到赤道面(equatorial plane)这一阶段。纺锤体微管向细胞内部侵入,与染色体的着丝点结合。着丝点处的分子马达使染色体向微管的负端移动。在光镜下可以看到,此时染色体也就是既向一极移动也向另一极移动,是以振荡的方式移向纺锤体中部的。其原因是姊妹染色单体的着丝点都结合有微管和分子马达。 3,中期 指从染色体排列到赤道面上,到姊妹染色单体开始分向两极的一段时间,极面观染色体呈辐射状排列。染色体两边的牵引力就像拔河一样达到平衡。

4,后期 指姊妹染色单体分开并移向两极的时期,当子染色体到达两极后,标志这一时期结束 ①后期A,指染色体向两极移动的过程。这是因为染色体着丝点微管在着丝点处去组装而缩短,在分子马达的作用下染色体向两极移动,体外实验证明即使在不存在ATP的情况下,染色体着丝点也有连接到正在去组装的微管上的能力,使染色体发生移动。②后期B,指两极间距离拉大的过程。这是因为一方面极体微管延长,结合在极体微管重叠部分的马达蛋白提供动力,推动两极分离;另一方面星体微管去组装而缩短,结合在星体微管正极的马达蛋白牵引两极距离加大。可见染色体的分离是在微管与分子马达的共同作用下实现的。

后期A,B是用药物鉴定出来的,如紫杉酚(taxol)能结合在微管的(+)端,抑制微管(+)端去组装,从而抑制后期A。动物中通常先发生后期A,再后期B,但也有些只发生后期A,还有的后期A、B同时发生。植物细胞没有后期B。 5,末期 末期是从子染色体到达两极,至形成两个新细胞为止的时期。末期涉及子核的形成和胞质分裂两个方面。 子核的形成:末期子核的形成,大体经历了与前期相反的过程,即染色体解聚缩,核仁出现和核膜重新形成。核仁由染色体上的核仁组织中心形成(NORs),几个NORS共同组成一个大的核仁,因此核仁的数目通常比NORs的数目要少。 前期核膜解体后,核纤层蛋白B与核膜残余小泡结合,末期核纤层蛋白B去磷酸化,介导核膜的重新装配。

胞质分裂:虽然核分裂与胞质分裂(cytokinesis)是相继发生的,但属于两个分离的过程,例如大多数昆虫的卵,核可进行多次分裂而无胞质分裂,某些藻类的多核细胞可长达数尺,以后胞质才分裂形成单核细胞。 动物细胞的胞质分裂是以形成收缩环的方式完成的,收缩环在后期形成,由大量平行排列的肌动蛋白和结合在上面的myosin II等成分组成。 植物胞质分裂的机制不同于动物,其后期的纺锤体中央出现成膜体(phragmoplast)。末期近两极处微管消失,中间微管保留,并数量增加,其中不断加入囊状物和电子密度高的物质,微管运送小泡,小泡不断融合扩大形成一片连续的质膜,细胞板(cell plate)将细胞一分为二,最后在细胞板两侧积累多糖,形成细胞壁。

植物细胞分裂和成膜体的形成

(二)与有丝分裂直接相关的亚细胞结构 1、中心体: 与微管装配和细胞分裂密切相关,有一对位于细胞中央的中心粒和周围的无定型物质构成。两个中心粒相互成直角,每一个成圆筒状,直径0.2μm ,圆筒壁由9组三联管构成,分α和β微管蛋白,圆筒的周围有γ蛋白等。中心体连同四射的微管构成“星体”。 中心体G1期末开始复制,S期结束,G2期开始分开并向两级移动。

中心体和纺锤体

细胞分裂的中心体循环

2、动粒与着丝粒: 动粒(着丝点)是附在着丝粒上的结构,每条中期染色体上有两个动粒,分别位于着丝粒的两侧,分裂时进入子细胞,S期时动粒复制。电镜下,动粒为园盘状的结构,分内、中、外三层。动粒和着丝粒结构和功能联系紧密,常被称为着丝粒-动粒复合体。 已有几种动粒蛋白被分离,包括CENP-A,B,C,E,F等。着丝粒DNA主要由a卫星DNA构成,常深入到动粒的内层。染色体依靠动粒捕捉纺锤体极体微管。

着丝粒和动粒

3、纺锤体 与染色体的分离直接相关,主要由微管和微管蛋白组成,两端为星体。动粒微管连接动粒和中心体,极性微管的一端游离,从两级发出的极性微管常在赤道处搭桥。 中心体装配涉及中心体周围微管的装配和中心体分离,中心体分离需要移动素类蛋白(kinesin related proteins KRPs)和细胞质动力蛋白(dynein)的作用。前者负责微管向正极移动,后者负责微管向负极移动。负向运动的蛋白先负责搭桥,将被结合的微管牵拉在一起,正向运动蛋白将纺锤体拉长。

有丝分裂过程中纺锤体和染色体的运动

纺锤体装配过程

(三)染色体运动的动力机制 1、染色体排队 有数种蛋白与染色体的排队有关,包括Mad和Rub,他们可使动粒敏感化,便于微管与动粒接触。动粒被微管捕捉后如何排列在赤道板上有两种解释,即牵拉假说和外推假说。 2、染色体分离 后期A:微管在动粒端解聚,动粒微管变短,是由于动粒蛋白沿微管向极部运动的结果。 后期B:极性微管蛋白聚合,微管拉长。

染色体列队 Mad 蛋白和Bub蛋白使动粒敏感化,使动粒与微管接触

. Experimental demonstration of the importance of mecha- nical tension in metaphase checkpoint control. MT behavior during formation of the metaphase plate. Initially,MT from opposite poles are different in length.

染色体运动的分子机制

有丝分裂后动粒沿动粒微管向极部运动

细胞分裂后纺锤体拉长

马达蛋白和微管蛋白共同协作,使染色体分离

动物细胞的胞质收缩环

三、 减数分裂 减数分裂(Meiosis)的特点是DNA复制一次,而细胞连续分裂两次,形成单倍体的精子和卵子,通过受精作用又恢复二倍体,减数分裂过程中同源染色体间发生交换,使配子的遗传多样化,增加了后代的适应性。 减数分裂可分为3种主要类型: 配子减数分裂(gametic meiosis),也叫终端减数分裂(terminal meiosis),其特点是减数分裂和配子的发生紧密联系在一起,在雄性脊椎动物中,一个精母细胞经过减数分裂形成4个精细胞,后者在经过一系列的变态发育,形成成熟的精子。在雌性脊椎动物中,一个卵母细胞经过减数分裂形成1个卵细胞和2-3个极体。

孢子减数分裂(sporic meiosis),也叫中间减数分裂(intermediate meiosis),见于植物和某些藻类。其特点是减数分裂和配子发生没有直接的关系,减数分裂的结果是形成单倍体的配子体(小孢子和大孢子)。小孢子再经过两次有次分裂形成包含一个营养核和两个雄配子(精子)的成熟花粉(雄配子体),大孢子经过三次有丝分裂形成胚囊(雌配子体),内含一个卵核、两个极核、3个反足细胞和两个助细胞。 合子减数分裂(zygotic meiosis),也叫初始减数分裂(initial meiosis),仅见于真菌和某些原核生物,减数分裂发生于合子形成之后,形成单倍体的孢子,孢子通过有丝分裂产生新的单倍体后代。

减数分裂由紧密连接的两次分裂构成。通常减数分裂I分离的是同源染色体,所以称为异型分裂或减数分裂。减数分裂II分离的是姊妹染色体,类似于有丝分裂,所以称为同型分裂或均等分裂。和有丝分裂一样为了描述方便将减数分裂分为几个期和亚期。 (一)间期 有丝分裂细胞在进入减数分裂之前要经过一个较长的间期,称前减数分裂间期(premeiotic interphase)或前减数分裂期(premeiosis)。前减数分裂期也可分为G1期、S期和G2期,在G1期和S期把麝香百合的花粉每细胞在体外培养,则发现细胞进行有丝分裂,将G2晚期的细胞在体外培养则向减数分裂进行,说明G2期是有丝分裂向减数分裂转化的关键时期。

(二)减数分裂过程 1、前期 I 减数分裂的特殊过程主要发生在前期I,通常人为划分为5个时期:①细线期(leptotene)、②合线期(zygotene)、③粗线期(pachytene)、④双线期(diplotene)、⑤终变期(diakinesis)。这5个阶段本身是连续的,之间没有截然的界限。 1)细线期: 染色体呈细线状,具有念珠状的染色粒。持续时间最长,占减数分裂周期的40%。细线期虽然染色体已经复制,但光镜下分辨不出两条染色单体。由于染色体细线交织在一起,偏向核的一方,所以又称为凝线期(synizesis),在有些物种中表现为染色体细线一端在核膜的一侧集中,另一端放射状伸出,形似花束,称为花束期。

2)合线期:持续时间较长,占有丝分裂周期的20%。亦称偶线期,是同源染色体配对的时期,这种配对称为联会(synapsis)。这一时期同源染色体间形成联会复合体(synaptonemal complex,SC)。在光镜下可以看到两条结合在一起的染色体,称为二价体(bivalent)。每一对同源染色体都经过复制,含四个染色单体,所以又称为四分体。 3) 粗线期:持续时间长达数天,此时染色体变短,结合紧密,在光镜下只在局部可以区分同源染色体,这一时期同源染色体的非姊妹染色单体之间发生交换的时期。在果蝇粗线期SC上具有与SC宽度相近的电子致密球状小体,称为重组节,与DNA的重组有关。

4)双线期:联会的同源染色体相互排斥、开始分离,但在交叉点(chiasma)上还保持着联系。双线期染色体进一步缩短,在电镜下已看不到联会复合体。交叉的数目和位置在每个二价体上并非是固定的,而随着时间推移,向端部移动,这种移动现象称为端化(terminalization),端化过程一直进行到中期。 5)终变期:二价体显著变短,并向核周边移动,在核内均匀散开,由于交叉端化过程的进一步发展,交叉数目减少,通常只有一至二个交叉。终变期二价体的形状表现出多样性,如V形、O形等。 核仁此时开始消失,核被膜解体。

2、中期 I 核仁消失,核被膜解体,标志进入中期I,中期I的主要特点是染色体排列在赤道面上。每个二价体有4个着丝粒、姊妹染色单位的着丝粒定向于纺锤体的同一极,故称联合定向(co-orientation)。 3、后期 I 二价体中的两条同源染色体分开,分别向两极移动。由于相互分离的是同源染色体,所以染色体数目减半。但每个子细胞的DNA含量仍为2C。同源染色体随机分向两极,使母本和父本染色体重新组合,产生基因组的变异。如人类染色体是23对,染色体组合的方式有223个(不包括交换),因此除同卵孪生外,几乎不可能得到遗传上等同的后代。

4、末期 I 染色体到达两极后,解旋为细丝状、核膜重建、核仁形成,同时进行胞质分裂。 5、减数分裂间期 在减数分裂I和II之间的间期很短,不进行DNA的合成,有些生物没有间期,而由末期I直接转为前期II。 6、减数分裂 II 可分为前、中、后、末四个四期,与有丝分裂相似。通过减数分裂一个精母细胞形成4个精子。而一个卵母细胞形成一个卵子及2-3个极体。

处于第六期的爪蟾卵母细胞(RD前期I)

精子和卵细胞形成过程中的减数分裂

减数分裂过程中染色体变化示意图

黑圆角蝉的精子发生

减数分裂模式图

染色体交换、基因重组

(三)联会复合体 联会复合体(synaptonemal complex, SC)是减数分裂合线期两条同源染色体之间形成的一种结构,于1963年由Moses发现,后来证明它与染色体的配对,交换和分离密切相关。 SC是同源染色体间形成的梯子样的结构。在电镜下观察,两侧是约40nm的侧生组分(lateral element),电子密度很高,两侧之间为宽约100nm的中间区(intermediate space),在电镜下是明亮区,在中间区的中央为中央组分(central element),宽约30nm。侧生组分与中央组分之间有横向排列的粗约7~10nm的SC纤维,使SC外观呈梯子状。

长期以来人们认为SC将同源染色体组织在一起,使伸入SC的DNA之间产生重组,但实验证明不仅SC的形成晚于基因重组的启动,而且基因突变不能形成SC的酵母中,同源染色体间照样可以发生交换。现在一般认为它与同源染色体间交换的完成有关。 在磷钨酸染色的SC中央,还可以看到呈圆形或椭圆形的重组节(recombination nodules,RNs),是同源染色体发生交叉的部位,有基因交换所需要的酶。 从形态学来看,SC形成于合线期,成熟于粗线期,并存在数天,消失于双线期。联会复合体的形成与合线期DNA(Zyg-DNA)有关,在细线期或合线期加入DNA合成抑制剂,则抑制SC的形成。

联会复合体 a. Electron micrograph of SC of human pachytene bivalent.(K: kinetochore; arrow: recombination nodules); b. Schematic diagram of SC; c. Electron micrograph of SC after treatment with DNase to remove chromasomal fibers.