贝叶斯估计 Bayes Estimation

Slides:



Advertisements
Similar presentations
第一章 、随机事件与概率 1.1 、随机事件 1.2 、随机事件的概率 1.3 、随机事件概率的计算 1.4 、伯努利概型.
Advertisements

第五章 假设检验 Hypothesis Testing 数理统计课题组. 本章大纲 1. 假设检验的基本概念 2.Neyman-Pearson 范式 3. 和假设检验有关的两个问题 4. 广义似然比检验 5. 单样本检验的几个实例 6. 两个样本的比较 7. 实验设计.
商管群科科主任 盧錦春 年 3 月份初階建置、 4 月份進階建置、 5 月份試賣與對外營業。
7.1 假设检验 1. 假设检验的基本原理 2. 假设检验的相关概念 3. 假设检验的一般步骤 4. 典型例题 5. 小结.
概率统计与随机过程 宋 晖 – 2013年秋.
非线性时间序列模型 一般非线性时间序列模型介绍 条件异方差模型 上海财经大学 统计与管理学院.
Chp11:贝叶斯推断 内容: 贝叶斯观点和贝叶斯方法 贝叶斯推断 vs. 频率推断.
07/16/96 概率统计 自考辅导.
第六章 样本及抽样分布 简单随机抽样: 代表性: 中每一个与所考察的总 体有相同的分布。 2.独立性: 是相互独立的随机变量。
引言 我们已介绍了总体、样本、简单随机样本、统计量和抽样分布的概念,介绍了统计中常用的三大分布,给出了几个重要的抽样分布定理. 它们是进一步学习统计推断的基础.
第二部分:统计推断 Chp6:统计推断概述 Chp7:非参数推断 Chp8:Bootstrap Chp9:参数推断 Chp10:假设检验
第四章 概率、正态分布、常用统计分布.
第三章 函数逼近 — 最佳平方逼近.
6.6 单侧置信限 1、问题的引入 2、基本概念 3、典型例题 4、小结.
概率论与 数理统计 高教自考复习 总第十四讲.
08-09冬季学期 概率论与数理统计 姜旭峰,胡玉磊.
动画分镜头技巧 梁思平.
“深入推进依法行政加快建设法治政府” -《法治政府建设实施纲要》解读
第六节 可降阶的二阶微分方程 一、 型的微分方程 二、 型的微分方程 三、 型的微分方程.
第三篇 医学统计学方法. 第三篇 医学统计学方法 医学统计学方法 实习2 主讲人 陶育纯 医学统计学方法 实习2 主讲人 陶育纯 流行病与卫生统计学教研室
主要内容 § 3.1 多维随机变量及联合分布 联合分布函里数 联合分布律 联合概率密度 § 3.2 二维随机变量的边缘分布
本讲义可在网址 或 ftp://math.shekou.com 下载
第四章 抽样误差与假设检验 要求: 掌握:均数的抽样误差与标准误,t分 布的特征,t界值表,总体均数可信区间及其与参考值范围的区别。
区间估计 Interval Estimation.
温故知新 1、凸透镜成像的规律有哪些? 2、照相机成像的原理是什么?.
统计学期末复习
Introduction To Mean Shift
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
例1 :甲击中的环数; X :乙击中的环数; Y 平较高? 试问哪一个人的射击水 : 的射击水平由下表给出 甲、乙两人射击,他们
一元线性回归模型 § 1 回归分析概述 § 2 一元线性回归模型的参数估计 § 3 一元线性回归模型的统计检验
第2章 一元线性回归 2 .1 一元线性回归模型 2 .2 参数 的估计 2 .3 最小二乘估计的性质 2 .4 回归方程的显著性检验
传感器网络数据融合技术研究 张小波 广东工业大学自动化学院网络工程系
本次课讲授:第二章第十一节,第十二节,第三章第一节, 下次课讲第三章第二节,第三节,第四节; 下次上课时交作业P29—P30
EM算法 一种参数估计的方法.
第十章 方差分析.
第六章 数理统计的基本知识 第一节 总体与样本
数据统计与分析 秦 猛 南京大学物理系 手机: 第十讲 数据统计与分析 秦 猛 南京大学物理系 办公室:唐仲英楼A 手机:
概 率 统 计 主讲教师 叶宏 山东大学数学院.
连续型随机变量及其概率密度 一、概率密度的概念与性质 二、常见连续型随机变量的分布 三、小结.
第七章 参数估计 7.3 参数的区间估计.
习题 一、概率论 1.已知随机事件A,B,C满足 在下列三种情况下,计算 (1)A,B,C相互独立 (2)A,B独立,A,C互不相容
抽样和抽样分布 基本计算 Sampling & Sampling distribution
Chp9:参数推断 主要内容 参数推断的基本概念 参数推断的方法 矩方法
概 率 统 计 主讲教师 叶宏 山东大学数学院.
应用概率统计 主讲:刘剑平.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
第三章 两变量线性回归.
第四节 随机变量函数的概率分布 X 是分布已知的随机变量,g ( · ) 是一个已知 的连续函数,如何求随机变量 Y =g(X ) 的分布?
第一部分:概率 产生随机样本:对分布采样 均匀分布 其他分布 伪随机数 很多统计软件包中都有此工具 如在Matlab中:rand
数据统计与分析 秦 猛 南京大学物理系 第11讲 办公室:唐仲英楼A
§5.2 抽样分布   确定统计量的分布——抽样分布,是数理统计的基本问题之一.采用求随机向量的函数的分布的方法可得到抽样分布.由于样本容量一般不止2或 3(甚至还可能是随机的),故计算往往很复杂,有时还需要特殊技巧或特殊工具.   由于正态总体是最常见的总体,故本节介绍的几个抽样分布均对正态总体而言.
概率论与数理统计B.
第六章 参数估计 §6.1 点估计的几种方法 §6.2 点估计的评价标准 §6.3 最小方差无偏估计 §6.4 贝叶斯估计
第八章 假设检验 8.1 假设检验的基本概念.
第七章 假设检验 §7.1 假设检验的基本思想与概念 §7.2 正态总体参数假设检验 §7.3 其它分布参数的假设检验
第三节 随机区组设计的方差分析 随机区组设计资料的总平方和可以分解为三项: (10.10).
难点:连续变量函数分布与二维连续变量分布
数理统计基本知识.
第十五讲 区间估计 本次课讲完区间估计并开始讲授假设检验部分 下次课结束假设检验,并进行全书复习 本次课程后完成作业的后两部分
本节课内容 MLE的性质 MLE很流行是因为MLE有一些很好的性质.
第十四章 假设检验 (Hypothesis Testing)
第八章 假设检验 8.3 两个正态总体参数的假设检验.
参数估计 参数估计问题:知道随机变量(总体)的分布类型, 但确切的形式不知道,根据样本来估计总体的参数,这 类问题称为参数估计。
假设检验.
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
§4.1数学期望.
7.3 参数的区间估计 一、区间估计基本概念 二、正态总体均值与方差的区间估计 三、小结.
我们探究学习 成果 直线的 倾斜角与斜率.
Presentation transcript:

贝叶斯估计 Bayes Estimation 数理统计课题组

例子: 某人打靶,打了5枪,枪枪中靶, 问:此人枪法如何? 某人打靶,打了500枪,枪枪中靶, 经典方法:极大似然估计:100% 但是: ……

几个学派(1) 经典学派:频率学派,抽样学派 带头人:Pearson、Fisher、Neyman 观点:概率就是频率 参数就是参数 联合分布密度:p(x1,x2,..xn ; )

几个学派(2) Bayesian学派: 带头人:Bayes,Laplace,Jeffreys,Robbins 观点:频率不只是概率 存在主观概率,和实体概率可转化 参数作为随机变量 条件分布: p(x1,x2,..xn | )

几个学派(3) 信念学派: 带头人:Fisher 观点:概率是频率 主观不是概率,而是信念度 参数不是随机变量,仅是普通变量 似然函数: L( | x1,x2,..xn)

批评1:置信区间 置信区间: 解释:区间[u1,u2]覆盖u的概率 不是u位于区间的概率 缺点:u不是变量

批评2:评价方法 假设检验、参数估计等都是多次重复的结果; 想知道: 一次实验发生的可能性

Bayesian方法

Bayesian公式 先验分布密度:q(y) 条件分布密度:p(x|y) 似然度 后验分布密度:h(y|x) 后验综合先验与样本信息

思路: 1、未知参数视为随机变量:  2、取样本x1…xn,求联合分布密度 3、联合分布密度->条件分布密度 数据的不可设计性与经验的不能穷尽性? 2、取样本x1…xn,求联合分布密度 p(x1,x2,..xn ; ), 是参数 3、联合分布密度->条件分布密度 p(x1,x2,..xn | ), 是随机变量 4、确定的先验分布() 5、利用Bayesian公式求后验分布密度 6、使用后验分布做推断(参数估计、假设检验)

例1:两点分布b(1,p)的 1. 联合分布: 2. 先验分布: 3. 后验分布: 4. 后验期望估计:

2、先验分布的共轭分布选取法 后验分布和先验分布是同一个类型 优点:易于解释、继续试验 已知: ,选 使得 与先验分布同类型 已知: ,选 使得 与先验分布同类型 若p(x|)服从正态分布,选正态分布 若p(x|)服从两点分布,选Beta分布 若p(x|)服从指数分布,选逆Gamma分布

Bayes统计推断问题 参数估计: 点估计 区间估计

估计的损失 损失函数: 风险:平均损失 一致最小风险: 对于任意产生的样本x1…xn, 都是最小分析估计。 Bayesian平均风险:

后验风险: Bayesian风险与后验风险 后验分析最小=>Bayesian风险最小

两种常用损失函数: 平方损失: 最小Bayesian风险估计:后验期望 点损失: 最大后验密度估计

例子: 正态分布 X1…Xn服从正态分布N(,2) , 2已知, 的先验分布是N(,2 ) 求的Bayes估计. 例子: 正态分布 X1…Xn服从正态分布N(,2) , 2已知, 的先验分布是N(,2 ) 求的Bayes估计. 求得后验分布还是正态分布 求得 例:某圆形产品内径X(单位:mm)服从正态分布N( ,0.4), 有先验分布N(2,0.22),现在测量X=1.8,n=5  MLE=1.8  bayes=(1.8*5/0.4+2*0.2^(-2))/(5/0.4+0.2^(-2))=1.93

置信区间估计: 方法: 是随机变量,可求其后验分布 步骤: 1.积分求后验分布 2.根据后验分布求置信区间

例子: 两点分布 X1…Xn服从两点分布,概率, 则 服从二项分布 求的估计 设先验分布是beta(a,b) 求得后验分布: 例子: 两点分布 X1…Xn服从两点分布,概率, 则 服从二项分布 求的估计 设先验分布是beta(a,b) 求得后验分布: 求得E(|r)=(a+r)/(a+b+n) 2.Neyman-Pearson范式 不用贝叶斯方法 规避了先验概率的决定 对两个假设区别对待,一个成为原假设H0(null hypotheses),另一个成为备择假设H1(alternative hypotheses) 由此导致在有些场合下选择原假设的困难 Neyman-Pearson引理(lemma) 方差已知的正态置信区间和假设检验的对偶关系:引理置信区间和假设检验的对偶关系:引理B 广义似然比检验: 方差未知正态总体的均值检验多项分布的广义似然比检验Pearson卡方统计量和似然比Handy-Weinberg均衡 在参数估计的例子中引入了Handy-Weinberg均衡Bacterial Clump泊松散布度检验(dispersion test)泊松散布度检验(dispersion test)泊松散布度检验:数方法:Mann-Whitney检验 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.5 2 2.5 3 3.5 a=2,b=2 a=0.5,b=0.5 a=2,b=5 a=5,b=2