第 7 章 存储器.

Slides:



Advertisements
Similar presentations
第七章 半导体存储器 《数字电子技术》7.1 概述 7.2 只读存储器( ROM ) 7.5 用存储器实现组合逻辑函数 7.4 存储器的扩展 7.3 随机存储器( RAM ) 7.6 集成芯片简介及应用举例.
Advertisements

A A A.
专题复习 --- 走进名著 亲近经典 读完《鲁滨孙漂流记》这本精彩的小说 后,一个高大的形象时时浮现在我的眼 前,他就是勇敢的探险家、航海家鲁滨 孙。他凭着顽强的毅力,永不放弃的精 神,实现了自己航海的梦想。 我仿佛看到轮船甲板上站着这样的一 个人:他放弃了富裕而又舒适的生活, 厌恶那庸庸碌碌的人生,从而开始了一.
第六章 遗传和变异 遗传的基本规律. 遗传性状由什么控制呢? 白人和黑人结合,后代是混血儿;马和驴产生骡? 高 + 矮 = 不高不矮 到底遗传有没有规律呢?
为什么爸爸妈 妈是双眼皮, 我是单眼皮? 为什么为什么? 555…. 1 、举例说出相对性状和基因的关系。 3 、理解近亲结婚的危害。 2 、 能够描述控制相对性状的一对基因的 传递特点。
國中教育會考說明 年 5 月 14 日(六) 105 年 5 月 15 日(日)  08:20- 08:30 考試說明  08:20- 08:30 考試說明  08:30-  09:40 社 會  08:30-  09:40 自 然 09:40- 10:20 休息 09:40-
第九章 版图设计实 例. 主要内容 1. CMOS 门电路 2. CMOS RAM 单元及阵列 3. CMOS D 触发器 4. CMOS 放大器 5. 双极集成电路.
第6章 存储系统 6. 1 存储器的分类与性能评价 6. 2 存储器访问的局部性原理与 层次结构存储系统 6. 3 半导体存储器
第一节 人口的数量变化.
德 国 鼓 励 生 育 的 宣 传 画.
控制方长投下的子公司,需要编制合并报表的演示思路
第5章目录 第五章 时序逻辑电路 5.1 概述 5.2 时序逻辑电路的分析方法 5.3 若干常用时序逻辑电路 5.4 时序逻辑电路的设计方法.
8 企业信息管理的定量分析 第八讲 企业信息管理的定量分析 8.1 企业信息化水平的测评 8.2 企业信息管理绩效的测评.
第四章 存储系统 4-1 存储系统概论 4-2 RAM(随机读写存储器) 4-3 ROM(只读存储器) 4-4 高速缓冲存储器(Cache)
成才之路 · 语文 人教版 • 中国古代诗歌散文欣赏 路漫漫其修远兮 吾将上下而求索.
臺北市國民小學101學年度第2學期 辦理祝妳好孕-課後照顧服務說明
第五课 让挫折丰富我们的人生 挫折面前也从容.
第二章 微型计算机系统 2.1基本术语和基本概念 硬件与软件
第6章 半导体存储器 6.1 概述 6.2 随机读写存储器(RAM) 6.3 只读存储器(ROM) 6.4 存储器的扩展
北京市科普项目社会征集指南及 项目建议方案解读
最新計算機概論 第3章 計算機組織.
第二章 计算机硬件基础 --微型计算机硬件的组成.
第4章 主存储器 4.1 主存储器概述 4.2 读/写存储器 4.3 非易失性存储器 4.4 DRAM的研制与发展
计算机导论 第4讲 微型计算机硬件系统 1.
第8章 机床操作 主讲:臧红彬 博士.
半导体存储器 第四章 半导体存储器.
第六章 补间动画 主讲人:马 震 人民邮电出版社.
第八章 可编程逻辑器件 本章的重点: 本章的难点: 1.PLD的基本特征,分类以及每种类型的特点;
孟德尔的豌豆杂交实验(一) 豌豆杂交实验为什么这么成功? 豌豆是自花传粉、闭花受粉植物; 人工异花传粉 有易于区分的性状。
遗传的基本规律 (一)基因的分离规律.
第一节 存储器的构成 第二节 存储系统的构成 第三节 Cache 第四节 虚拟存储器
成才之路 · 语文 人教版 • 中国古代诗歌散文欣赏 路漫漫其修远兮 吾将上下而求索.
第七章 单片机存储器的扩展.
第 4 章 記憶單元.
基本硬體介紹 1.主機板 2.CPU(運算中心) 3.記憶體(RAM-短暫記憶資料處) 4. 硬碟(HDD儲存資料處) 5.顯示卡(接螢幕)
第8章 AT89S52单片机外部 存储器的扩展 1.
数字系统设计 Digital System Design
第五章 存储系统 半导体存储器概述 系统内存扩充 高速缓冲存储器 虚拟存储器 PC系列机中的主存储器 习题与思考 上一章 目 录 帮助
第六章 存贮器 6.1 存储器概述 6.2 随机存取存储器(RAM) 6.3 只读存储器(ROM) 6.4 CPU与存储器的连接.
4.1 概述 4.2 主存储器 4.3 高速缓冲存储器 4.4 辅助存储器.
第 6 章 存储系统 6.1 概述 存储器的层次结构 存储器的分类 存储器的基本组成
第5章 存储系统.
第四章 存 储 器 4.1 概述 4.2 主存储器 4.3 高速缓冲存储器 4.4 辅助存储器.
可编程逻辑器件及ASIC简介.
第六章 采用中、大规模 集成电路的逻辑设计.
PLC电气控制与组态设计 哈尔滨理工大学 第一章 可编程控制器的基本知识 2018/11/28.
存储设备介绍 广州创龙电子科技有限公司 Guangzhou Tronlong Electronic Technology Co., Ltd.
建國國小英語教學線上課程 字母拼讀篇(一) 製作者:秦翠虹老師、林玉川老師.
第 9 章 存储器和可编程逻辑器件 9.1 半导体存储器 9.2 可编程逻辑器件.
计算机组成原理 武汉科技大学 计算机科学与技术学院
第13章 数字电路基础 13.1 数字电路概述 13.2 数字电路中的数值与码制 13.3 逻辑代数 13.4 逻辑门电路
如何寫工程計畫書 臺北市童軍會考驗委員會 高級考驗營 版.
实验八 D / A、A / D转换器 一、实验目的 1、了解D / A和A / D转换器的基本工作原理和基本结构。
第2章 電腦硬體的架構及功能.
单片机应用技术 项目一 循环彩灯装置 第2讲 51单片机的结构与引脚 《单片机应用技术》精品课程组 湖北职业技术学院机电工程系.
第3章 存储系统 本章内容: 存储器概述 随机读写存储器 只读存储器和闪速存储器 高速存储器 cache存储器 虚拟存储器 存储保护.
第1章 單晶片微電腦概論.
第5章 半导体存储器 存储器基本概念 随机存取存储器(RAM) 只读存储器(ROM) 存储器连接与扩充应用 微机系统的内存结构.
数字电子技术 湖南计算机高等专科学校李中发 胡锦 制作.
第1章 单片机概述 1.1 单片机的概念 1.2 单片机的发展概况 1.3 MCS-51系列 1.4 AT89系列单片机
第七章 可编程逻辑器件 PLD 7.1 PLD 概述 PLD 的电路结构及分类 PLD 的编程工艺及描述的逻辑规则和符号 PLD 的设计过程及主要优点 7.2 只读存储器 ROM 的内部结构 用ROM 实现组合逻辑设计 常用的LSI.
第6章 半导体存储器和可编程逻辑器件 6.1 概述 6.2 ROM(只读存储器) 6.3 RAM (随机存取存储器)
第7章 半导体存储器 7.1半导体存储器的特点和分类 半导体存储器的特点 集成度高,体积小 可靠性高,价格低
第6章 存储器接口 6.1 存储器概述 6.2 半导体存储器 6.3 MCS-51单片机存储器扩展.
第5章 存储器 5.1 存储器概述 5.2 半导体存储芯片结构及使用 位系统的存储器接口.
3 電腦硬體 3-1 處理單元 3-2 記憶單元 3-3 輸入單元 3-4 輸出單元 3-5 電腦元件的使用與故障排除.
第七章 半导体存储器.
第五章 输入/输出系统 本章讨论: 接口的基本概念 总线的基本概念 中断方式及其接口组成 中断方式及其接口组成 DMA方式及其接口组成
第三章 半导体存储器及其接口 第一节 概述 第二节 半导体存储器 第三节 半导体存储器与CPU接口 一、存储器的分类
第三章 计算机体系结构.
Presentation transcript:

第 7 章 存储器

7.1 半导体存储器 7.1.1 只读存储器(ROM) 1. ROM的结构

图 7-1 ROM的基本结构

存储矩阵是存放信息的主体,它由许多存储单元排列组成。每个存储单元存放一位二值代码(0 或 1),若干个存储单元组成一个“字”(也称一个信息单元)。 地址译码器有n条地址输入线A0~An-1,2n条译码输出线W0~W2n-1,每一条译码输出线Wi称为“字线”,它与存储矩阵中的一个“字”相对应。因此, 每当给定一组输入地址时,译码器只有一条输出字线Wi被选中,该字线可以在存储矩阵中找到一个相应的“字”,并将字中的m位信息Dm-1~D0送至输出缓冲器。读出Dm-1~D0的每条数据输出线Di也称为“位线”,每个字中信息的位数称为“字长”。

ROM的存储单元可以用二极管构成,也可以用双极型三极管或MOS管构成。存储器的容量用存储单元的数目来表示,写成“字数乘位数”的形式。对于图 7-1 的存储矩阵有2n个字, 每个字的字长为m,因此整个存储器的存储容量为2n×m位。 存储容量也习惯用K(1 K=1024)为单位来表示,例如1 K×4、 2 K×8 和 64 K×1的存储器,其容量分别是 1024×4 位、 2048×8 位 和 65 536×1 位。 输出缓冲器是ROM的数据读出电路,通常用三态门构成,它不仅可以实现对输出数据的三态控制,以便与系统总线联接, 还可以提高存储器的带负载能力。

图 7-2 二极管ROM结构图

图7-2 是具有两位地址输入和四位数据输出的ROM结构图, 其存储单元用二极管构成。图中,W0~W3四条字线分别选择存储矩阵中的四个字,每个字存放四位信息。制作芯片时,若在某个字中的某一位存入“1”,则在该字的字线Wi与位线Di之间接入二极管,反之,就不接二极管。 读出数据时,首先输入地址码,并对输出缓冲器实现三态控制,则在数据输出端D3~D0可以获得该地址对应字中所存储的数据。例如,当A1A0=00时,W0=1,W1=W2=W3=0,即此时W0被选中,读出W0对应字中的数据D3D2D1D0=1001。同理,当A1A0分别为01、10、11时,依次读出各对应字中的数据分别为 0111、1110、0101。因此,该ROM全部地址内所存储的数据可用表 7-1 表示。

表 7-1 图 7-2 ROM的数据表 地 址 数 据 A1 A0 D3 D2 D1 D0 0 0 0 1 1 0 1 1 1 0 0 1 数 据 A1 A0 D3 D2 D1 D0 0 0 0 1 1 0 1 1 1 0 0 1 0 1 1 1 1 1 1 0 0 1 0 1

2. ROM在组合逻辑设计中的应用 从存储器的角度看,只要将逻辑函数的真值表事先存入ROM,便可用ROM实现该函数。例如,在表 7-1 的ROM数据表中,如果将输入地址A1、A0看成两个输入逻辑变量,而将数据输出D3、D2、D1、D0看成一组输出逻辑变量,则D3、D2、D1、D0就是A1、A0的一组逻辑函数,表 7-1就是这一组多输出组合逻辑函数的真值表,因此该ROM可以实现表 7-1 中的四个函数(D3、D2、D1、D0),其表达式为 (7-1)

从组合逻辑结构来看,ROM中的地址译码器形成了输入变量的所有最小项,即每一条字线对应输入地址变量的一个最小项。在图 7-2 中, 因此式(7-1)又可以写为:

图 7-3 ROM的阵列框图

图 7-4 图 7-2 ROM的阵列图

用ROM实现逻辑函数一般按以下步骤进行: ① 根据逻辑函数的输入、输出变量数目,确定ROM的容量,选择合适的ROM。 ② 写出逻辑函数的最小项表达式,画出ROM的阵列图。 ③ 根据阵列图对ROM进行编程。

【 例 7-1 】用ROM设计一个四位二进制码转换为格雷码的代码转换电路。 解:① 输入是四位自然二进制码B3~B0,输出是四位格雷码G3~G0,故选24×4 的ROM。 ② 四位二进制码转换为格雷码的真值表,即ROM的编程数据表如表 7-2 所示。由此可写出输出函数的最小项之和式为

表 7-2 二进制码转换为格雷码的真值表

(a) 二进制码转为格雷码的阵列图; (b) 逻辑符号图 ③ 用ROM实现码组转换的阵列图及逻辑符号图分别如图 7-5(a)、 (b)所示。 图 7-5 例 7-1 阵列图和逻辑符号图 (a) 二进制码转为格雷码的阵列图; (b) 逻辑符号图

3. ROM的编程及分类 ROM的编程是指将信息存入ROM的过程。根据编程和擦除的方法不同,ROM可分为掩模ROM、可编程ROM(PROM)和可擦除的可编程ROM(EPROM)三种类型。 1) 掩模ROM 掩模ROM中存放的信息是由生产厂家采用掩模工艺专门为用户制作的,这种ROM出厂时其内部存储的信息就已经“固化”在里边了,所以也称固定ROM。它在使用时只能读出,不能写入,因此通常只用来存放固定数据、固定程序和函数表等。

2) 可编程ROM(PROM) PROM在出厂时,存储的内容为全 0(或全 1),用户根据需要,可将某些单元改写为 1(或 0)。 这种ROM采用熔丝或PN结击穿的方法编程,由于熔丝烧断或PN结击穿后不能再恢复, 因此PROM只能改写一次。 熔丝型PROM的存储矩阵中,每个存储单元都接有一个存储管,但每个存储管的一个电极都通过一根易熔的金属丝接到相应的位线上,如图 7-6 所示。用户对PROM编程是逐字逐位进行的。首先通过字线和位线选择需要编程的存储单元,然后通过规定宽度和幅度的脉冲电流,将该存储管的熔丝熔断,这样就将该单元的内容改写了。

图 7-6 熔丝型PROM的存储单元

采用PN结击穿法PROM的存储单元原理图如图 7-7(a)所示,字线与位线相交处由两个肖特基二极管反向串联而成。正常工作时二极管不导通,字线和位线断开,相当于存储了“0”。若将该单元改写为“1”,可使用恒流源产生约 100~150 mA电流使V2击穿短路,存储单元只剩下一个正向连接的二极管V1(见图(b)),相当于该单元存储了“1”;未击穿V2的单元仍存储“0”。

图 7-7 PN结击穿法PROM的存储单元

3) 可擦除的可编程ROM(EPROM) 这类ROM利用特殊结构的浮栅MOS管进行编程,ROM中存储的数据可以进行多次擦除和改写。  最早出现的是用紫外线照射擦除的EPROM(Ultra-Violet Erasable Programmable Read-Only Memory, 简称UVEPROM)。 不久又出现了用电信号可擦除的可编程ROM(Electrically Erasable Programmable Read-Only Memory, 简称E2PROM)。 后来又研制成功的快闪存储器(Flash Memory)也是一种用电信号擦除的可编程ROM。

7.1.2 随机存取存储器(RAM) 随机存取存储器也称随机存储器或随机读/写存储器,简称RAM。RAM工作时可以随时从任何一个指定的地址写入(存入)或读出(取出)信息。根据存储单元的工作原理不同, RAM分为静态RAM和动态RAM。 1. 静态随机存储器(SRAM) 1) 基本结构 SRAM主要由存储矩阵、地址译码器和读/写控制电路三部分组成,其框图如图 7-12 所示。

图 7-12 SRAM的基本结构

存储矩阵由许多存储单元排列组成,每个存储单元能存放一位二值信息(0或1),在译码器和读/写电路的控制下,进行读/写操作。 地址译码器一般都分成行地址译码器和列地址译码器两部分, 行地址译码器将输入地址代码的若干位A0~Ai译成某一条字线有效,从存储矩阵中选中一行存储单元;列地址译码器将输入地址代码的其余若干位(Ai+1~An-1)译成某一根输出线有效,从字线选中的一行存储单元中再选一位(或n位),使这些被选中的单元与读/写电路和I/O(输入/输出端)接通,以便对这些单元进行读/写操作。

读/写控制电路用于对电路的工作状态进行控制。CS称为片选信号,当CS=0时,RAM工作,CS=1时,所有I/O端均为高阻状态,不能对RAM进行读/写操作。称为读/写控制信号。R/W=1 时,执行读操作,将存储单元中的信息送到I/O端上;当R/W=0时,执行写操作,加到I/O端上的数据被写入存储单元中。

2) SRAM的静态存储单元 静态RAM的存储单元如图 7-13 所示,图 7-13(a)是由六个NMOS管(V1~V6)组成的存储单元。V1、V2构成的反相器与V3、V4构成的反相器交叉耦合组成一个RS触发器,可存储一位二进制信息。Q和Q是RS触发器的互补输出。V5、V6是行选通管,受行选线X(相当于字线)控制,行选线X为高电平时Q和Q的存储信息分别送至位线D和位线D。V7、V8是列选通管,受列选线Y控制,列选线Y为高电平时,位线D和D上的信息被分别送至输入输出线I/O和I/O,从而使位线上的信息同外部数据线相通。

(a) 六管NMOS存储单元; (b)六管CMOS存储单元 图 7-13 SRAM存储单元 (a) 六管NMOS存储单元; (b)六管CMOS存储单元

2. 动态随机存储器(DRAM) 动态RAM的存储矩阵由动态MOS存储单元组成。动态MOS存储单元利用MOS管的栅极电容来存储信息,但由于栅极电容的容量很小,而漏电流又不可能绝对等于0,所以电荷保存的时间有限。为了避免存储信息的丢失,必须定时地给电容补充漏掉的电荷。通常把这种操作称为“刷新”或“再生”,因此DRAM内部要有刷新控制电路,其操作也比静态RAM复杂。尽管如此,由于DRAM存储单元的结构能做得非常简单,所用元件少,功耗低,所以目前已成为大容量RAM的主流产品。

7.1.3 存储器容量的扩展 1. 位数的扩展 存储器芯片的字长多数为一位、四位、八位等。当实际的存储系统的字长超过存储器芯片的字长时,需要进行位扩展。 位扩展可以利用芯片的并联方式实现,图7-15是用八片 1024×1 位的RAM扩展为1024×8 位RAM的存储系统框图。 图中八片RAM的所有地址线、R/W、CS分别对应并接在一起, 而每一片的I/O端作为整个RAM的I/O端的一位。 ROM芯片上没有读/写控制端R/W,位扩展时其余引出端的连接方法与RAM相同。

图 7-15 RAM的位扩展连接法

2. 字数的扩展 字数的扩展可以利用外加译码器控制芯片的片选(CS)输入端来实现。图 7-16 是用字扩展方式将四片256×8 位的RAM扩展为1024×8 位RAM的系统框图。图中,译码器的输入是系统的高位地址A9、A8,其输出是各片RAM的片选信号。若A9A8=01,则RAM(2)片的CS=0,其余各片RAM的CS均为1, 故选中第二片。只有该片的信息可以读出,送到位线上,读出的内容则由低位地址A7~A0决定。显然,四片RAM轮流工作,任何时候,只有一片RAM处于工作状态,整个系统字数扩大了四倍,而字长仍为八位。 ROM的字扩展方法与上述方法相同。

图 7-16 RAM的字扩展