Presentation is loading. Please wait.

Presentation is loading. Please wait.

解析几何 空间直角坐标系 阜宁县东沟中学高一数学组.

Similar presentations


Presentation on theme: "解析几何 空间直角坐标系 阜宁县东沟中学高一数学组."— Presentation transcript:

1 解析几何 空间直角坐标系 阜宁县东沟中学高一数学组

2 数轴上的点 B A -2 -1 O 1 2 3 x 数轴上的点可以用 唯一的一个实数表示

3 平面中的点可以用有序实数对(x,y)来表示点
平面坐标系中的点 y y (x,y) P 平面中的点可以用有序实数对(x,y)来表示点 x x O

4 在教室里同学们的位置坐标 O y 讲台 x

5 教室里某位同学的头所在的位置 z y O x

6 空间直角坐标系 —Oxyz 竖轴 纵轴 右手直角坐标系 横轴

7 空间中点的坐标 空间的点 有序数组

8 空间中点的坐标(方法二)

9 P147 例1

10 P147 例2

11 P147 例2

12 P148 练习 2.

13 对称点 y P2 (-x0 ,y0) y0 P (x0,y0) -x0 x0 O x (x0 , -y0) P1 -y0 P3
横坐标相反, 纵坐标不变。 P2 (-x0 ,y0) y0 P (x0,y0) -x0 x0 O x P1 (x0 , -y0) P3 (-x0 , -y0) -y0 横坐标相反, 纵坐标相反。 横坐标不变, 纵坐标相反。

14 空间对称点

15 对称点 一般的P(x , y , z) 关于: (1)x轴对称的点P1为__________;
(2)y轴对称的点P2为__________; (3)z轴对称的点P3为__________; 关于谁对称谁不变

16 空间点到原点的距离

17 两点间距离公式 类比 猜想

18 练习 P150 练习 1.(只求距离)

19 原结论成立.

20 设P点坐标为 所求点为


Download ppt "解析几何 空间直角坐标系 阜宁县东沟中学高一数学组."

Similar presentations


Ads by Google