Presentation is loading. Please wait.

Presentation is loading. Please wait.

排列组合应用题解法综述 计数问题中排列组合问题是最常见的,由于其解法往往是构造性的, 因此方法灵活多样, 不同解法导致问题难易变化也较大,而且解题过程出现“重复”和“遗漏”的错误较难自检发现。因而对这类问题归纳总结,并把握一些常见解题模型是必要的。

Similar presentations


Presentation on theme: "排列组合应用题解法综述 计数问题中排列组合问题是最常见的,由于其解法往往是构造性的, 因此方法灵活多样, 不同解法导致问题难易变化也较大,而且解题过程出现“重复”和“遗漏”的错误较难自检发现。因而对这类问题归纳总结,并把握一些常见解题模型是必要的。"— Presentation transcript:

1 排列组合应用题解法综述 计数问题中排列组合问题是最常见的,由于其解法往往是构造性的, 因此方法灵活多样, 不同解法导致问题难易变化也较大,而且解题过程出现“重复”和“遗漏”的错误较难自检发现。因而对这类问题归纳总结,并把握一些常见解题模型是必要的。

2 知识结构网络图: 排列 排列数公式 组合数公式 组合 组合数性质

3 两个原理的区别与联系: 分类原理 分步原理 做一件事或完成一项工作的方法数 定 义 相同点 不同点 直接(分类)完成 间接(分步骤)完成
名称内容 分类原理 分步原理 定 义 相同点 不同点 做一件事,完成它可以有n类办法, 第一类办法中有m1种不同的方法, 第二类办法中有m2种不同的方法…, 第n类办法中有mn种不同的方法, 那么完成这件事共有 N=m1+m2+m3+…mn 种不同的方法 做一件事,完成它可以有n个步骤, 做第一步中有m1种不同的方法, 做第二步中有m2种不同的方法……, 做第n步中有mn种不同的方法, 那么完成这件事共有 N=m1·m2·m3·…·mn 种不同的方法. 做一件事或完成一项工作的方法数 直接(分类)完成 间接(分步骤)完成

4 1.排列和组合的区别和联系: 名 称 排 列 组 合 定义 种数 符号 计算 公式 关系 性质 , 所有排列的的个数 所有组合的个数
排 列 组 合 定义 种数 符号 计算 公式 关系 性质 从n个不同元素中取出m个元 素,按一定的顺序排成一列 从n个不同元素中取出m个元 素,把它并成一组 所有排列的的个数 所有组合的个数

5 一、把握分类原理、分步原理是基础 例1 如图,某电子器件是由三个电 阻组成的回路,其中有6个焊接
点A,B,C,D,E,F,如果某个焊接点脱落,整个电路就会不通。现发现电路不通了, 那么焊接点脱落的可能性共有( ) 63种 (B)64种 (C)6种 (D)36种 分析:由加法原理可知 由乘法原理可知 2×2×2×2×2×2-1=63

6 小结:本题主要考查了二个原理、分类讨论的思想。以物理问题为背景(或其它背景如以英语单词)的排列、组合应用题,显得小巧有新意.

7 练习1 在今年国家公务员录用中,某市农业局准备录用文秘人员二名,农业企业管理人员和农业法制管理人员各一名,报考农业局公务人员的考生有10人,则可能出现的录用情况有____种(用数字作答)。
解法1: 解法2:

8 本题考查了乘法原理或先组后排。高考突出考查运算能力,排列、组合的选择填空题都要求以数字作答,同学们千万要注意。

9 二、注意区别“恰好”与“至少” 解: 例2 从6双不同颜色的手套中任取4只,其中恰好有一双同色的手套的不同取法共有( )
例2 从6双不同颜色的手套中任取4只,其中恰好有一双同色的手套的不同取法共有( ) (A) 480种(B)240种 (C)180种 (D)120种 解: 小结:“恰好有一个”是“只有一个”的意思。“至少有一个”则是“有一个或一个以上”,可用分类讨论法求解,它也是“没有一个”的反面,故可用“排除法”。

10 练习2 从6双不同颜色的手套中任取4只,其中至少有一双同色手套的不同取法共有____种
解:

11 例3 将5列车停在5条不同的轨道上,其中a列车不停在第一轨道上,b列车不停在第二轨道上,那么不同的停放方法有( )
三、特殊元素(或位置)优先安排 例3 将5列车停在5条不同的轨道上,其中a列车不停在第一轨道上,b列车不停在第二轨道上,那么不同的停放方法有( ) (A)120种 (B)96种 (C)78种 (D)72种 解: 练习3 从7盆不同的盆花中选出5盆摆放在主席台前,其中有两盆花不宜摆放在正中间,则一共有_____种不同的摆放方法(用数字作答)。 解:

12 小结:1、“在”与“不在”可以相互转化。解决某些元素在某些位置上用“定位法”,解决某些元素不在某些位置上一般用“间接法”或转化为“在”的问题求解。
2、排列组合应用题极易出现“重”、“漏”现象,而重”、“漏”错误常发生在该不该分类、有无次序的问题上。为了更好地防“重”堵“漏”,在做题时需认真分析自己做题思路,也可改变解题角度,利用一题多解核对答案

13 四、“相邻”用“捆绑”,“不邻”就“插空”
例4 七人排成一排,甲、乙两人必须相邻,且甲、乙都不与丙相邻,则不同的排法有( )种 960种 (B)840种 (C)720种 (D)600种 解: 另解:

14 小结:以元素相邻为附加条件的应把相邻元素视为一个整体,即采用“捆绑法”;以某些元素不能相邻为附加条件的,可采用“插空法”。“插空”有同时“插空”和有逐一“插空”,并要注意条件的限定.

15 练习4 某城新建的一条道路上有12只路灯,为了节省用电而不影响正常的照明,可以熄灭其中三盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,可以熄灭的方法共有( )
(A) 种(B) 种 (C) 种 (D) 种 解:

16 五、混合问题,先“组”后“排” 例5 对某种产品的6件不同的正品和4件不同的次品,一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有种可能? 解:由题意知前5次测试恰有4次测到次品,且第5次测试是次品。故有: 种可能

17 练习5 某学习小组有5个男生3个女生,从中选3名男生和1名女生参加三项竞赛活动,每项活动至少有1人参加,则有不同参赛方法______种.
解:采用先组后排方法:

18 小结:本题涉及一类重要问题:问题中既有元素的限制,又有排列的问题,一般是先元素(即组合)后排列。

19 六、分清排列、组合、等分的算法区别 例6 (1)今有10件不同奖品,从中选6件分给甲一件,乙二件和丙三件,有多少种分法?
例6 (1)今有10件不同奖品,从中选6件分给甲一件,乙二件和丙三件,有多少种分法? (2) 今有10件不同奖品, 从中选6件分给三人,其中1人一件1人二件1人三件, 有多少种分法? (3) 今有10件不同奖品, 从中选6件分成三份,每份2件, 有多少种分法? 解:(1) (2) (3)

20 小结:排列与组合的区别在于元素是否有序; m等分的组合问题是非等分情况的;而元素相同时又要另行考虑.

21 解: (1) (2) 练习6 (1)今有10件不同奖品,从中选6件分成三份, 二份各1件,另一份4件, 有多少种分法?
(2) 今有10件不同奖品,从中选6件分给甲乙丙三人,每人二件有多少种分法? 解: (1) (2)

22 七、分类组合,隔板处理 例7 从6个学校中选出30名学生参加数学竞赛,每校至少有1人,这样有几种选法?
例7 从6个学校中选出30名学生参加数学竞赛,每校至少有1人,这样有几种选法? 分析:问题相当于把个30相同球放入6个不同盒子(盒子不能空的)有几种放法?这类问可用“隔板法”处理. 解:采用“隔板法” 得:

23 小结:把n个相同元素分成m份每份,至少1个元素,问有多少种不同分法的问题可以采用“隔板法”得出共有
种.

24 本课回顾复习了二个计数原理和排列组合数公式,重点分析了排列组合应用题常见的几种模型,以及解决这些问题的几种典型方法。


Download ppt "排列组合应用题解法综述 计数问题中排列组合问题是最常见的,由于其解法往往是构造性的, 因此方法灵活多样, 不同解法导致问题难易变化也较大,而且解题过程出现“重复”和“遗漏”的错误较难自检发现。因而对这类问题归纳总结,并把握一些常见解题模型是必要的。"

Similar presentations


Ads by Google