Presentation is loading. Please wait.

Presentation is loading. Please wait.

第 13 章 兩個母體比較的推論.

Similar presentations


Presentation on theme: "第 13 章 兩個母體比較的推論."— Presentation transcript:

1 第 13 章 兩個母體比較的推論

2 兩個母體的比較 在前面幾章,我們學到了估計與檢驗單一母體: 母體平均數 µ 母體比例 p 本章之目的在比較兩個母體,我們呈現幾個不同的
方法,感興趣的參數是: 兩個平均數之間的差異。 兩個母體變異數的比率。 兩個比例之間的差異。 第13章 兩個母體比較的推論 第 頁

3 兩母體平均數差異的推論 為了檢定與估計兩母體平均數之間的差異,我們分別從兩個 母體抽出隨機樣本。我們討論獨立樣本,即定義獨立樣本為
相互之間完全無關的樣本。 (計算母體2的 與母體1的方式類似) 樣本,大小: n1 母體1 參數: 統計量: 第13章 兩個母體比較的推論 第467頁

4 兩母體平均數差異的推論 因為我們要比較兩個母體平均數間差異,我們使用 統計值 為µ1- µ2的不偏及一致的估計量。
第13章 兩個母體比較的推論 第467頁

5 的抽樣分配 如果母體為常態或近似常態,或者如果母體是非常態但是樣本很大(n1, n2 > 30) ,則 為常態分配。
的期望值是 µ1- µ2 的變異數是 以及標準誤是 第13章 兩個母體比較的推論 第468頁

6 μ1-μ2的推論 如果母體為常態或近似常態,或者如果母體是非常 態但是樣本很大,則 為常態分配。因此:
態但是樣本很大,則 為常態分配。因此: 是一標準常態(或近似常態)的隨機變數。 我們可以藉此計算出µ1 - µ2的檢定統計量與信賴區 間估計量。 第13章 兩個母體比較的推論 第468頁

7 μ1-μ2的推論 然而,這些公式很少被使用,因為母體變異數σ12與σ22在實務上通常是未知的。 我們用t- 測量值替代。
我們思考兩個未知母體變異數的案例:何時我們相信它們是相等的,相反地,何時它們不相等。 更多關於此內容如下… ?? 第13章 兩個母體比較的推論 第468頁

8 μ1-μ2的檢定統計量(相等變異數) 計算 —被稱為混合變異數估計量(pooled variance estimator)… 在此使用:
自由度 第13章 兩個母體比較的推論 第469頁

9 μ1-μ2 的信賴區間估計量(相等變異數) 當母體變異數相等時,μ1-μ2 的檢定統計量被給定為: 自由度 混合變異數估計量
第13章 兩個母體比較的推論 第469頁

10 μ1-μ2的檢定統計(不相等變異數) 當母體變異數不相等時,μ1-μ2 的檢定統計量被給定為: 同樣地,信賴區間估計量為: 自由度
μ1-μ2的檢定統計(不相等變異數) 當母體變異數不相等時,μ1-μ2 的檢定統計量被給定為: 同樣地,信賴區間估計量為: 自由度 第13章 兩個母體比較的推論 第 頁

11 ≥ 該選擇哪個檢定統計量? 我們該選擇哪一種檢定統計量?相等變異數或不等變異數? 無論是否有證據去推論母體變異數是相異的,我們將進行
該選擇哪個檢定統計量? 我們該選擇哪一種檢定統計量?相等變異數或不等變異數? 無論是否有證據去推論母體變異數是相異的,我們將進行 相等變異數 t- 檢定 因此,任何兩個給定樣本: 12=22 的自由度 12≠22 的自由度 較大的自由度,同樣的擁有較大的樣本 第13章 兩個母體比較的推論 第470頁

12 檢定母體變異數 檢定的假設是 H0: σ12 / σ22 = 1 H1: σ12 / σ22 ≠ 1
檢定統計量:s12 / s22,服從自由度為ν1 = n1– 1 和ν2 = n2 −2的F- 分配 所需要的條件等同於對µ1 - µ2 的t- 檢定條件,及兩母體皆服從常態分配。 第13章 兩個母體比較的推論 第471頁

13 檢定母體變異數 這是一個雙尾檢定,所以拒絕域為 第13章 兩個母體比較的推論 第471頁

14 範例13.1 數以百萬計的投資人購買共同基金,從數千種可能的基金中做選擇。
有些基金可以直接向銀行或財務機構購買,而有些則必須透過收取服務費的經紀人購買。 這產生一個問題。投資人直接購買是否能夠比透過經紀人購買做得更好。 第13章 兩個母體比較的推論 第471頁

15 範例13.1 為了回答這個問題,一群研究人員從直接購買以及透過經紀人購買的共同基金中隨機抽樣年度報酬率,並且記錄了年度淨報酬率,它為扣除所有相關費用之的投資報酬,如 Xm13-01所列。 在5%的信賴水準下,我們是否能夠結論:直接購買的共同基金表現得比透過經紀人購買的共同基金好? 第13章 兩個母體比較的推論 第 頁

16 範例13.1 為了回答此問題,我們必須比較直接購買與透過經紀人購買共同基金報酬率的母體。 很明顯地,資料是區間的(我們記錄了真實的數字)。
辨識方法 範例13.1 為了回答此問題,我們必須比較直接購買與透過經紀人購買共同基金報酬率的母體。 很明顯地,資料是區間的(我們記錄了真實的數字)。 這個問題目的-資料型態的組合告訴我們要被檢定的參數是兩個平均數之間的差異µ1- µ2。 第13章 兩個母體比較的推論 第472頁

17 範例13.1 要檢定的假設是直接購買共同基金的平均淨報酬率(µ1)大於透過經紀人購買共同基金的平均淨報酬率(µ2)因此,對立假設為
辨識方法 範例13.1 要檢定的假設是直接購買共同基金的平均淨報酬率(µ1)大於透過經紀人購買共同基金的平均淨報酬率(µ2)因此,對立假設為 H1: µ1- µ2 > 0 H0: µ1- µ2 = 0 要決定應用哪一個µ1- µ2的 t- 檢定,我們執行σ12/ σ22 的 F- 檢定。 第13章 兩個母體比較的推論 第472頁

18 範例13.1 計算 由資料我們計算下列的統計量 s12 = 37.49 與 s22 = 43.34
檢定統計量 F = s12/ s22 = 37.49/43.34 = 0.86 拒絕域 第13章 兩個母體比較的推論 第472頁

19 計算 範例13.1 檢定統計量的值是F = .8650。Excel 輸出單尾 p- 值。因為我們執行雙尾檢定,我們將這個值加倍。因此,這項檢定的p- 值是2 × = .6136。 第13章 兩個母體比較的推論 第473頁

20 範例13.1 沒有足夠的證據去推論母體變異數不同。因此我們必須應用µ1- µ2 的相等-變異數 t- 檢定。 詮釋
第13章 兩個母體比較的推論 第473頁

21 計算 範例13.1 點選Data、Data Analysis,與t-Test: Two-Sample Assuming Equal Variances。 第13章 兩個母體比較的推論

22 計算 範例13.1 第13章 兩個母體比較的推論 第474頁

23 範例13.1 檢定統計量的值是2.29。單尾p- 值是.0122。 我們觀察到這項檢定的 p- 值是小的( 並且檢定統計量落在拒絕域之中)。
詮釋 範例13.1 檢定統計量的值是2.29。單尾p- 值是.0122。 我們觀察到這項檢定的 p- 值是小的( 並且檢定統計量落在拒絕域之中)。 因此,我們結論有充分的證據去推論平均而言直接購買共同基金的表現超越透過經紀人購買的共同基金。 第13章 兩個母體比較的推論 第475頁

24 信賴區間估計 假設我們想要知道直接購買共同基金與透過經紀人 購買共同基金之間平均報酬率差異的95% 信賴區間 估計值。
對相同的母體變異數,平均數之間差異的信賴區間 估計量是 直接購買共同基金與透過經紀人購買共同基金之間 平均報酬率差異的95% 信賴區間估計值 第13章 兩個母體比較的推論 第 頁

25 計算 信賴區間估計 第13章 兩個母體比較的推論 第476頁

26 信賴區間估計 我們估計直接購買共同基金的報酬率平均大於透過經紀人購買共同基金的報酬率在.38 與5.43 個百分點之間。 詮釋
第13章 兩個母體比較的推論 第476頁

27 範例13.2 當家族經營企業被老闆的兒子或女兒接管時會發生什麼情況?
如果新老闆是公司擁有者的下一代時,經過改變之後的企業是否經營得比較好,或是由外來者當執行長(CEO) 時,企業會經營得比較好? 為了求得答案,研究人員在1994 與2002 年之間隨機選取140 家公司,其中30%把所有權傳給下一代,70% 則是指定外來者當CEO。 第13章 兩個母體比較的推論 第476頁

28 範例13.2 對於每一家公司,研究人員根據資產的比例計算新CEO 接管前一年和後一年的經營收入。
這個變數的改變( 之後的經營收入-之前的經營收入) 被記錄並且列於Xm13-02。 這些資料是否容許我們去推論使用下一代CEO 的影響力不同於聘請外來者當CEO 的影響力? 第13章 兩個母體比較的推論 第476頁

29 範例13.2 本例的目的是要比較兩個母體: 母體群體1:公司擁有者的兒子或女兒成為CEO的前後平均差異。
辨識方法 範例13.2 本例的目的是要比較兩個母體: 母體群體1:公司擁有者的兒子或女兒成為CEO的前後平均差異。 母體群體2:公司指定外來者當CEO的前後平均差異。 資料是區間的(經營收入)。 兩母體平均數之間的差異µ1- µ2,其中µ1是母體群體1,而µ2為母體群體2。 第13章 兩個母體比較的推論 第477頁

30 範例13.2 因為我們想要決定兩個平均數之間是否存在著差異(difference),對立假設為 H1: µ1- µ2 ≠ 0 以及虛無假設為
辨識方法 範例13.2 因為我們想要決定兩個平均數之間是否存在著差異(difference),對立假設為 H1: µ1- µ2 ≠ 0 以及虛無假設為 H0: µ1- µ2 = 0 我們必須決定是否應用µ1- µ2 的相等變異數t- 檢定,或是µ1- µ2 的不等-變異數 t- 檢定。 第13章 兩個母體比較的推論 第 頁

31 範例13.2 辨識方法 為了決定要應用哪一個 t- 檢定,我們執行σ12 / σ22 的F- 檢定。 由資料我們計算下列的統計量。
s12 = 和 s22 = 8.03 檢定統計量 F = 3.79/8.03 = 0.47 拒絕域 第13章 兩個母體比較的推論 第477頁

32 範例13.2 辨識方法 點選 Data, Data Analysis,與 F-Test Two Sample for Variances
第13章 兩個母體比較的推論

33 範例13.2 檢定統計量的值是 F =.47以及 p- 值= 2×.0040 = .0080。 辨識方法
第13章 兩個母體比較的推論 第478頁

34 辨識方法 範例13.2 因此,適當的方法是µ1- µ2的不等-變異數 t- 檢定。 第13章 兩個母體比較的推論 第478頁

35 計算 範例13.2 點選Data、Data Analysis,與t-Test: Two-Sample Assuming Unequal Variances 。 第13章 兩個母體比較的推論

36 計算 範例13.2 第13章 兩個母體比較的推論 第479頁

37 範例13.2 t- 統計量為-3.22 並且其 p- 值是 .0017。因此,我們下結論說有充分的證據去推論經營收入的平均改變有差異。 詮釋
第13章 兩個母體比較的推論 第479頁

38 信賴區間估計 我們也可以用計算信賴區間估計量的方式產生有關兩母體平均數間差異的推論。我們使用m1 - m2 的不等-變異數信賴區間估計量以及95%的信賴水準。 我們使用Estimators工作簿中的t-Estimate_2 Means (Uneq-Var) 工作表或手算。 第13章 兩個母體比較的推論 第480頁

39 計算 信賴區間估計 啟動Estimators工作簿中的t-Estimate_2 Means (Uneq-Var) 工作表並且帶入樣本統計量與信賴水準。 第13章 兩個母體比較的推論 第480頁

40 信賴區間估計 我們估計外聘CEO 經營收入的平均改變超越下一代CEO 經營收入的平均改變在 .51 到2.16 個百分點之間。 詮釋
第13章 兩個母體比較的推論 第480頁

41 檢查必要的條件 相等-變異數和不等-變異數兩種方法皆要求兩母體為常態。如同以前,我們能夠藉著畫資料的直方圖來檢查這項條件是否被滿足。
第13章 兩個母體比較的推論 第480頁

42 檢查必要的條件:範例13.1 . 第13章 兩個母體比較的推論 第481頁 圖13.2 & 圖13.3

43 檢查必要的條件:範例13.2 第13章 兩個母體比較的推論 第 頁 圖13.4 & 圖13.5

44 必要條件的違背 當常態的條件不被滿足時, 我們可以使用一個無母數方法──Wilcoxon 等級和檢定(Wilcoxon rank sum test) 來取代µ1-µ2的相等-變異數 t- 檢定。 當母體是非常態時,我們並沒有對µ1-µ2的不等-變異數 t- 檢定之無母數替代方案。 第13章 兩個母體比較的推論 第482頁

45 專有術語 來自第一個樣本的所有觀測值被儲存於一欄,而來自第二個樣本的所有觀測值被儲存於另一欄,資料被稱為非堆疊式(unstacked) 。
如果來自兩種樣本的所有資料 被儲存在同一欄中,則稱資料 為堆疊式(stacked)。 第13章 兩個母體比較的推論 第482頁

46 發展對統計觀念的了解 1 本節的公式相對於其他章節是比較複雜的。但是, 在觀念上,兩個檢定定統計量都是基於我們在第11
章和第12 章介紹的方法。 也就是,檢定統計量的值是統計量 和參數1 - 2 假設值之間的差距,以標準誤為衡量單位。 第13章 兩個母體比較的推論 第 頁

47 發展對統計觀念的了解 2 如同對 p 的區間估計量,對所有在此介紹的推論程序,標準誤必須從資料估計。
我們用來計算x1 - x2 標準誤的方法取決於母體變異數是否相等。當它們相等,我們使用混合變異數估計量sp2 來計算。 我們在此應用一個重要的原則,而且我們將在13.5 節和之後的章節中再次應用此原則。此原則是,如果可能,混合樣本資料來估計標準誤是較具優勢的。 第13章 兩個母體比較的推論 第484頁

48 發展對統計觀念的了解 2 這個原則可以概略敘述如下:只要可能,混合樣本資料去估計標準誤是較具優勢的。在先前的應用中,我們能夠混合是因為我們假設兩組樣本是從兩個具共同變異數的母體中抽取出來。 合併兩組樣本增加估計值的精確度。因此,sp2 是比個別用s12 或s22 更好的共同變異數估計量。 當兩母體變異數不等時,我們不能混合資料以產生一個共同的估計量。 我們必須計算s12 和s22 並使用它們分別去估計12 和22 。 第13章 兩個母體比較的推論 第484頁

49 辨識因素 I 辨識1 - 2 相等-變異數 t- 檢定和估計量的因素 問題目的:比較兩個母體。 資料類型:區間。
敘述性測量的類型:中央位置。 實驗設計:獨立樣本。 母體變異數:相等。 第13章 兩個母體比較的推論 第484頁

50 辨識因素 II 辨識1 - 2 不等-變異數t- 檢定和估計量的因素 問題目的:比較兩個母體。 資料類型:區間。
敘述性測量的類型:中央位置。 實驗設計:獨立樣本。 母體變異數。 第13章 兩個母體比較的推論 第484頁

51 範例13.3 雖然有些爭論,科學家大致同意高纖穀類可以降低罹患 各種癌症的可能性。但是,有一位科學家宣稱早餐吃高
纖穀類的人,與早餐不吃高纖穀類的人相較,平均而言 在午餐時會攝取少一點的卡路里。 如果這個宣稱為真,高纖穀類製造商將可以宜稱另一個 食用他們產品的好處——對減肥者有潛在的減重效果。 對宣稱的一項初步檢定中 · 隨機抽出150個人 · 並且詢問 他們日常早餐與午餐的食物為何。 第13章 兩個母體比較的推論 第488頁

52 範例13.3 每一個人被分類為高纖穀類的消費者或非消費者, 並且在午餐所吃下的卡路里被測量且記錄下來。這 些資料如Xm13-03所列。
科學家是否能夠在5%的顯著水準下結論他的認知為 正確的? 第13章 兩個母體比較的推論 第488頁

53 範例13.3 第13章 兩個母體比較的推論 第 頁

54 範例13.3 檢定統計量的值是- 2.09。 單尾的 p- 值是.0193。
根據此結果,我們下結論說有充分的證據去推論高纖穀物的消費者午餐的確比非高纖穀物的消費者攝取較少的卡路里。 第13章 兩個母體比較的推論 第489頁

55 觀測和實驗資料 從這個結果,我們傾向於相信在早餐食用高纖穀物可能是一種減重的方法。 但是,還有其他可能的詮釋。
例如,攝取較少卡路里的人很可能是比較重視健康的一群人,而這些人比較可能會將高纖穀物當成是健康早餐的一部分。 在這個詮釋中,高纖穀物並不一定導致低午餐卡路里攝取。 第13章 兩個母體比較的推論 第489頁

56 觀測和實驗資料 另一個因素是,對健康的整體顧慮同時導致低午餐卡路里攝取和以高纖穀物為早餐。 注意的是這個統計程序的結論是不變的。
平均而言,食用高纖穀物的人在午餐攝取較少的卡路里。但是,因為資料蒐集的方法,我們要詮釋這個結果是比較困難的。 第13章 兩個母體比較的推論 第489頁

57 觀測和實驗資料 根據範例13.3的結果,我們傾向於相信在早餐食用 高纖穀物可能是一種減重的方法。
但是,還有其他可能的詮釋。例如,攝取較少卡路 里的人很可能是比較重視健康的一群人,而這些人 比較可能會將高纖穀物當成是健康早餐的一部分。 在這個詮釋中,高纖穀物並不一定導致低午餐卡路 里攝取。另一個因素是,對健康的整體顧慮將同時導致低午餐卡路里攝取和以高纖穀物為早餐。 第13章 兩個母體比較的推論 第489頁

58 觀測和實驗資料 假設我們用實驗的方法重做範例13.3。 我們隨機抽選出150 個人來參與這個實驗。
並隨機指派75 個人於早餐食用高纖穀物,而另外75 個人吃其他的食品。 我們接著再記錄他們每一個人在午餐所攝取的卡路里。 第13章 兩個母體比較的推論 第489頁

59 觀測和實驗資料 在理想的情況下,在這個實驗中,兩群人對所有其他的面向會比較相似,包括對健康顧慮。( 越大的樣本大小越能增加兩群體相似的可能性。) 假如統計的結果與範例13.3 的結果大致相同,我們就有一些正當的理由去相信早餐食用高纖穀物導致減少午餐卡路里的攝取。 第13章 兩個母體比較的推論 第489頁

60 成對樣本 在13.1 節中,感興趣的參數是兩母體平均數之間的 差異,其中資料是由獨立樣本取得。 然而,假設在一個樣本中的一個觀測值與第二個樣
本的一個觀測值配對,稱為配對實驗。 為了說明我們為何會需要配對實驗以及如何處理這 種方法所產生的資料,考慮範例13.4。 第13章 兩個母體比較的推論 第491頁

61 範例13.4 過去幾年一些以網路為基礎提供就業服務的公司逐漸成立。 一位這類公司的經理想要調查最近支付給MBA 工作的薪資。
特別是,她想要知道是否支付給主修財務者的薪資高於主修行銷者的薪資。 第13章 兩個母體比較的推論 第491頁

62 範例13.4 在初步的研究中,她隨機抽樣50 位最近畢業的MBA,其中半數主修財務,半數主修行銷。
對每一個人,她記錄其最高的薪資( 包括紅利)。資料列於Xm13-04。 我們是否能夠推論在這些MBA 之中,主修財務者比主修行銷者獲得更高的薪資支付? 第13章 兩個母體比較的推論 第491頁

63 辨識方法 範例13.4 參數是兩平均數的差異µ1 - µ2(其中 µ1=提供給主修財務者的平均最高薪資,以及µ2 = 提供給主修行銷者的平均最高薪資)。 因為我們想要決定是否主修財務者被提供較高的薪資,對立假設將指定 µ1大於µ2。 對變異數執行 F- 檢定,使用相等一變異數檢定統計量。 第13章 兩個母體比較的推論 第491頁

64 辨識方法 範例13.4 假設分別為: Excel的結果為: 第13章 兩個母體比較的推論 第492頁

65 計算 範例13.4 第13章 兩個母體比較的推論 第493頁

66 詮釋 範例13.4 檢定統計量的值(t =1.04) 與其 p- 值 (.1513) 指出只有很少的證據可以支持主修財務者比主修行銷者獲得較高薪資的假設。 第13章 兩個母體比較的推論 第493頁

67 範例13.4 注意我們有一些證據支持對立假設。 樣本平均數的差異為: = (65,624 -60,423) = 5,201 詮釋
第13章 兩個母體比較的推論 第493頁

68 範例13.5 假設現在我們以下列的方式重做這項實驗。 我們檢視主修財務與主修行銷MBA 的成績單。
我們隨機選取平均成績(grade point average, GPA)介於 3.92 與 4.0 之間(最多為 4)的一位主修財務者與一位主修行銷者。 然後我們隨機選取平均成績介於於3.84 與 3.92 之間的一位主修財務者與一位主修行銷者。 第13章 兩個母體比較的推論 第 頁

69 範例13.5 我們持續這個程序直到第25 對的樣本點被抽出,其GPA是落在2.0 與2.08 之間。 ( 畢業要求的最低GPA 是2.0。)
如同我們在範例13.4 中所執行的,我們記錄最高的薪資。這些資料,與 GPA 群組,列於Xm13-05。 從這些資料我們是否可以結論主修財務者比主修行銷者吸取較高的薪資? 第13章 兩個母體比較的推論 第494頁

70 辨識方法 範例13.5 在範例 l3.4中描述的實驗是一個獨立樣本的設計。 也就是,一個樣本中的觀測值與第二個樣本中的觀 測值之間沒有關係存在。但是,在這個範例中的實 驗被設計為在一個樣本中的每一個觀測值與在另一 個樣本中的一個觀測值配對。這項配對是選擇具有 相似 GPA 的主修財務者與主修行銷者。因此,在每 一個配對組中比較不同主修的薪資是合理的。這類 的實驗稱為配對實驗(matched pairs experiment)。 第13章 兩個母體比較的推論 第494頁

71 辨識方法 範例13.5 對每一個GPA 組,我們計算主修財務和行銷者薪資之間的配對差異。 第13章 兩個母體比較的推論 第494頁

72 範例13.5 下圖表黑字部分為原始的薪資資料(Xm13-05) ,藍字部分為計算後的結果。 辨識方法
雖然一位學生不是主修財務就是主修行銷(即獨立),但是資料以這種方式群組使之成為配對實驗(即,在群組#1的兩位學生是根據他們的成績範圍被“配對”)。 平均數的差異=差異的平均數,所以我們可以認為「配對差異的平均數」是我們感興趣的參數: 第13章 兩個母體比較的推論

73 範例13.5 主修財務者比主修行銷者吸取較高的薪資? 對立假設為: H1: (我們的虛無假設為 H0: ) 辨識方法
第13章 兩個母體比較的推論 第 頁

74 D的檢定統計量 差異的母體平均數(μD)的檢定統計量為: 在差異是常態分配的前提下,它是具有自由度v =D -1的學生t 分配。
辨認方法 D的檢定統計量 差異的母體平均數(μD)的檢定統計量為: 在差異是常態分配的前提下,它是具有自由度v =D -1的學生t 分配。 第13章 兩個母體比較的推論 第495頁

75 範例13.5 計算 點選Data, Data Analysis,與 t-Test: Paired Two- Sample for Means
第13章 兩個母體比較的推論

76 計算 範例13.5 第13章 兩個母體比較的推論 第496頁

77 詮釋 範例13.5 檢定統計量的值是 t = 3.81,具有.0004 的p- 值。現在存在著壓倒性的證據去推論主修財務者比主修行銷者獲得更高的薪資。 第13章 兩個母體比較的推論 第497頁

78 範例13.6 μD信賴區間估計值 應用信賴區間的一般公式,我們可以推導出μD 的信賴區間估計量:
第13章 兩個母體比較的推論 第 頁

79 檢查必要的條件 母體的差異被要求為常態分佈。 就如之前的作法, 我們藉著繪製差異的直方圖以檢視條件是否被滿足。
第13章 兩個母體比較的推論 第500頁 圖13.6

80 必要條件的違背 假如差異是非常的非常態,我們不能採用D 的t- 檢定。
但是我們能夠採用一個無母數方法──配對樣本的Wilcoxon符號等級和檢定。 第13章 兩個母體比較的推論 第500頁

81 獨立樣本或成對樣本:哪一種實驗設計比較好?
範例13.4 和範例13.5 展示實驗設計在統計推論上是一項重要的因素。 但是,這兩個範例引起了數個有關實驗設計的問題。 1. 為何配對實驗可導致主修財務者比主修行銷者得到較高薪資的結論,然而獨立樣本實驗卻不能? 第13章 兩個母體比較的推論 第498頁

82 獨立樣本或成對樣本:哪一種實驗設計比較好?
2. 我們是否應該總是使用配對樣本的實驗?是否有使用上的缺點? 3. 當一個配對實驗被執行時,我們該如何辨識? 第13章 兩個母體比較的推論 第498頁

83 獨立樣本或成對樣本:哪一種實驗設計比較好?
在範例13.5 中執行的配對實驗可以降低資料的變異性。 要了解這一點,檢查兩種樣本的統計量。在範例13.4,我們發現 x1 - x2 =5,201。 在範例13.5,我們計算xD = 5,065。因此,兩個檢定統計量。 第13章 兩個母體比較的推論 第498頁

84 獨立樣本或成對樣本:哪一種實驗設計比較好?
因此,兩個檢定統計量的分子是非常相似的。 但是,因為標準誤的關係,範例13.5 的檢定統計量比範例13.4 的檢定統計量大很多。 第13章 兩個母體比較的推論 第498頁

85 獨立樣本或成對樣本:哪一種實驗設計比較好?
在範例13.4 中,我們計算 範例13.5 產生 第13章 兩個母體比較的推論 第 頁

86 獨立樣本或成對樣本:哪一種實驗設計比較好?
配對實驗是否總是產生比獨立樣本實驗大的檢定統計量?答案是,不一定。 假設對我們的範例,我們發現公司在決定該支付 MBA 畢業生多少薪資時,並不考慮GRA。 在這種情況,當與獨立樣本做比較時,配對實驗並不會顯著地減少變異性。 第13章 兩個母體比較的推論 第499頁

87 獨立樣本或成對樣本:哪一種實驗設計比較好?
正如你所見,在本書中我們處理已被執行的實驗所產生的問題。 因此,你的任務之一是決定適合的檢定統計量。 在比較兩個區間資料母體的個案中,你必須決定是否樣本是獨立的(在這樣的個案中參數是1-2)或配對的(在這樣的個案中參數是D)以選擇正確的檢定統計量。 第13章 兩個母體比較的推論 第499頁

88 獨立樣本或成對樣本:哪一種實驗設計比較好?
為了幫助你做這個判斷,我們建議你詢問並回答下列問題: 是否有一些自然的關係存在於每一對觀測值之間,它能夠提供一個合邏輯的理由去比較樣本l的第一個觀測值與樣本 2 的第一個觀測值、樣本1的第二個觀測值與樣本 2 的第二個觀測值,以此類推? 第13章 兩個母體比較的推論 第 頁

89 發展對統計觀念的了解 1 本節應用了兩個在統計上最重要的原則。 第一個觀念是分析變異性的來源。在範例13.4 和範
例13.5 中,我們顯示藉由降低每一個樣本薪資之間 的變異性,能夠偵測出介於兩個主修之間的實際差 異。 第13章 兩個母體比較的推論 第501頁

90 發展對統計觀念的了解 1 這是一個一般化分析資料程序的應用,將部分的變異性歸屬於數個來源。
在範例13.5中,兩個變異性的來源是GPA 和MBA 的主修。但是,我們對介於不同GPA 畢業生之間的變異性並不感興趣。 取而代之,我們僅想要移除該變異來源,使得決定主修財務者是否獲得較大的薪資支付更為容易。 第13章 兩個母體比較的推論 第501頁

91 發展對統計觀念的了解1 在第14 章,我們將介紹一個稱為變異數分析(analysis of variance) 的方法,如其名稱所建議的:它分析變異性的來源,試圖去偵測真正的差異。 在這個程序大部分的應用中,我們將對每一個變異性來源感興趣,而不是簡單地降低其中一個來源。 我們將這種過程稱為變異性的解釋(explaining the variation)。解釋變異性的觀念也應用於第16 至第17 章,在其中我們將介紹迴歸分析。 第13章 兩個母體比較的推論 第501頁

92 發展對統計觀念的了解 2 第二個在本節中展示的原則是統計實作人員能夠設 計資料蒐集的程序,使得變異性的來源能夠被分析。
在執行範例13.5 中的實驗之前,統計實作人員懷疑 不同GPA 的畢業生之間有大的差異。 第13章 兩個母體比較的推論 第501頁

93 發展對統計觀念的了解2 因此,實驗被安排來儘可能移除那些差異所造成的影響。
我們也可能設計實驗讓我們更容易偵測出實際的差異以及最小化資料蒐集的成本。 第13章 兩個母體比較的推論 第501頁

94 辨識因素 辨識D 的t- 檢定和估計量的因素: 問題目的:比較兩個母體。 資料類型:區間。 敘述性測量的類型:中央位置。
實驗設計:成對樣本。 第13章 兩個母體比較的推論 第501頁

95 兩母體變異數比值的推論 到目前為止我們已經看過中央位置測量的比較,稱為兩母體的平均數。
當看到兩母體變異數,我們考慮變異數的比值,也就是,我們感興趣的參數是: 這個統計量 服從自由度為ν1 = n1 - 1 和ν2 = n2 -1 的F 分配。 第13章 兩個母體比較的推論 第503頁

96 兩母體變異數比值的推論 虛無假設永遠表達為 H0: (我們的虛無假設將永遠指向兩個母體的變異數是相等的,因此,比值將會等於1。)
因此,我們的檢定統計量是: 第13章 兩個母體比較的推論 第505頁

97 範例13.7 在範例12.3 中,我們應用一個變異數的卡方檢定去 決定是否有足夠的證據去下結論說母體變異數小於 1.0。
假設統計實作人員也從另一個容器填充機蒐集資料, 並且記錄了一個隨機樣本的填充量。在5% 的顯著水 準下,我們是否可以推論第二部機器的一致性是比 較好的。 第13章 兩個母體比較的推論 第 頁

98 範例13.7 問題之目的是要比較兩個母體,資料是區間的。 由於我們想要有關兩部機器一致性的資訊 · 我們想
辨識方法 範例13.7 問題之目的是要比較兩個母體,資料是區間的。 由於我們想要有關兩部機器一致性的資訊 · 我們想 要檢定的參數是σ12 / σ22,其中σ12 是機器 l 的變異數 而σ22是機器 2 的變異數。 第13章 兩個母體比較的推論 第506頁

99 範例13.7 我們必須執行σ12 / σ22的 F - 檢定以決定是否母體 2 的變異數是小於母體 l 的變異數。
辨識方法 範例13.7 我們必須執行σ12 / σ22的 F - 檢定以決定是否母體 2 的變異數是小於母體 l 的變異數。 換言之,我們想要決定是否有足夠的證據去推論σ12 大於σ22。因此,我們檢定的假設為 H0: σ12 / σ22 = 1 H1: σ12 / σ22 > 1 第13章 兩個母體比較的推論 第506頁

100 範例13.7 點選Data、Data Analysis,與F-Test Two-Sample for Variances。 計算
第13章 兩個母體比較的推論

101 計算 範例13.7 第13章 兩個母體比較的推論 第506頁

102 詮釋 範例13.7 沒有足夠的證據去推論機器2 的變異數小於機器1 的 變異數。 第13章 兩個母體比較的推論 第507頁

103 範例13.8 決定在範例13.7 中兩母體變異數比值的95% 信賴區 間估計量。 已知信賴區間估計量σ12 / σ22 為:
已知信賴區間估計量σ12 / σ22 為: 第13章 兩個母體比較的推論 第507頁

104 計算 範例13.8 開啟Estimators 工作簿中的F-Estimate_2 Variances 工作表,並且代入樣本變異數、樣本大小,以及信賴水準。 我們估計 σ12 / σ22 落在.6164 和 之間。 注意 1 在這個區間之中。 第13章 兩個母體比較的推論 第 頁

105 辨識因素 辨識的F- 檢定與估計量的因素: 問題目的:比較兩個母體。 資料類型:區間。 敘述性測量的類型:變異性。
第13章 兩個母體比較的推論 第508頁

106 兩母體比例差異的推論 我們現在將看看當資料是名目的(即:類別的)時候,兩母體之間差異的推論。
當資料是名目的,唯一有意義的計算是計數每一種類型發生的次數,以及計算比例。因此,在本節中要被檢定的和估計的參數是兩母體比例之間的差異p1–p2。 第13章 兩個母體比較的推論 第509頁

107 統計量和抽樣分配 為了推論參數p1–p2,我們選取母體的樣本,計算樣本比例並且看它們的差異 是p1–p2的一個不偏且一致的估計量。 和
我們將母體1計數成功的次數標示為x1。 第13章 兩個母體比較的推論 第510頁

108 抽樣分配 在樣本大小夠大的前提下,統計量 會近似於常態分配。我們表達樣本大小的條件為 和 皆大於或等於5。 平均數、變異數、標準誤分別是:
在樣本大小夠大的前提下,統計量 會近似於常態分配。我們表達樣本大小的條件為 和 皆大於或等於5。 平均數、變異數、標準誤分別是: 因此,變數 是近似標準常態分配。 第13章 兩個母體比較的推論 第 頁

109 檢定和估計 因為母體比例(p1 & p2)未知,標準誤
是未知的。因此, 對於 的標準誤,我們有兩種不同的估計量,取決於虛無假設。我們將在下一頁看見案例。 第13章 兩個母體比較的推論 第511頁

110 的檢定統計量 有兩個案例可以考慮 公式1 假如虛無假設設定為 H0: ( p1 - p2) = 0 檢定統計量是 是混和比例估計值 公式2
H0: ( p1 - p2) = D (D≠0) 檢定統計量為 它可以被表示為 第13章 兩個母體比較的推論 第512頁

111 範例13.9 General Products Company 製造與銷售各種家庭用品。由於激烈的競爭,其產品之一──沐浴皂──的銷售情形不佳。 為了改善銷售量,General Products 決定引進更具吸引力的包裝。 這家公司的廣告代理商發展兩種新的設計。 第13章 兩個母體比較的推論 第514頁

112 範例13.9 第一種設計以數種亮麗顏色為特色,與其他品牌做區別。 第二種設計以淡綠色為底並僅僅印上該公司的商標。
為了檢定哪一種設計比較好,行銷經理選擇兩家超市。 其中一家超市,香皂被包裝在使用第一種設計的盒中,第二家超市則使用第二種設計。 第13章 兩個母體比較的推論 第514頁

113 範例13.9 每一家超市的產品掃描機記錄一週之內的每一位香皂購買者。 兩家超市記錄了五種在超市中銷售的香皂商品的條碼後四位。 Xm13-09
General Products 品牌香皂的條碼是9077( 其他品牌的條碼是4255、3745、7118,與8855)。 第13章 兩個母體比較的推論 第514頁

114 範例13.9 在測試期間過後,掃描機的資料被轉換成電腦檔案。
由於第一種設計較昂貴,管理階層決定當有充分證據讓他們下結論其為一種較佳的設計時才採用這種設計。 管理階層應該轉換到亮麗顏色的設計或是簡單的綠色設計? 第13章 兩個母體比較的推論 第514頁

115 範例13.9 問題之目的是比較兩個母體。第一個是在超市1 浴皂銷售的母體,以及第二個是在超市2 浴皂銷售的母體。
辨識方法 範例13.9 問題之目的是比較兩個母體。第一個是在超市1 浴皂銷售的母體,以及第二個是在超市2 浴皂銷售的母體。 因為數值為「購買General Products 浴皂」與「購買其他公司的浴皂」,所以資料為名目的。 這兩個因素告訴我們要檢定的參數是兩母體比例之間的差異p1 – p2 ( 其中p1 與p2 分別代表General Products 品牌的浴皂在超市1 與超市2 中銷售的比例)。 第13章 兩個母體比較的推論 第514頁

116 範例13.9 因為我們想要知道是否有足夠的證據去採用亮麗顏色的設計,對立假設為 虛無假設一定是
辨識方法 範例13.9 因為我們想要知道是否有足夠的證據去採用亮麗顏色的設計,對立假設為 H1: (p1 – p2) > 0 虛無假設一定是 H0: (p1 – p2) = 0 這告訴我們這是一個公式1 的應用。因此,檢定統計量為 第13章 兩個母體比較的推論 第514頁

117 範例13.9 點選Add-Ins、Data Analysis Plus,與Z-Test : 2 Proportions。 計算
第13章 兩個母體比較的推論

118 計算 範例13.9 第13章 兩個母體比較的推論 第515頁

119 詮釋 範例13.9 檢定統計量的值是z = 2.90;其 p- 值是.0019。有充分的證據去推論亮麗顏色的設計比簡單的設計更受歡迎。因此,建議管理階層可以轉換到第一種設計。 第13章 兩個母體比較的推論 第516頁

120 範例13.10 假設在範例13.9 中,亮麗顏色設計的額外成本要求它必須比簡單設計的銷售多3%。 第13章 兩個母體比較的推論 第516頁

121 範例13.10 對立假設為 H1: (p1–p2) > .03 則虛無假設是H0: (p1–p2) = .03 辨識方法
由於虛無假設指定一個不為0 的差異,我們將應用公式2 的檢定統計量。 第13章 兩個母體比較的推論 第516頁

122 範例13.10 點選Add-Ins、 Data Analysis Plus,與 Z-Test: 2 Proportions 計算
第13章 兩個母體比較的推論

123 計算 範例13.10 第13章 兩個母體比較的推論 第517頁

124 範例13.10 並沒有充分的證據去推論購買亮麗顏色設計的香皂顧客比例比購買簡單設計的香皂顧客比例高3%。 詮釋
第13章 兩個母體比較的推論 第517頁

125 信賴區間估計 參數為p1 – p2,以下列的信賴區間估計量來估計: 表達樣本大小的條件為 和 皆大於或等於 5。
表達樣本大小的條件為 和 皆大於或等於 5。 第13章 兩個母體比較的推論 第518頁

126 範例13.11 為了協助估計利潤的差異,在範例13.9 與範例13.10 中的行銷經理想要估計兩個比例之間的差異。建議
使用95% 的信賴水準。 第13章 兩個母體比較的推論 第517頁

127 範例13.11 點選Add-Ins、Data Analysis Plus,與Z-Estimates: 2 Proportions。 計算
第13章 兩個母體比較的推論

128 計算 範例13.11 第13章 兩個母體比較的推論 第518頁

129 辨識因素 辨識p1 – p2 的z- 檢定與估計量的因素 問題目的:比較兩個母體。 資料類型:名目。
第13章 兩個母體比較的推論 第520頁


Download ppt "第 13 章 兩個母體比較的推論."

Similar presentations


Ads by Google