Download presentation
Presentation is loading. Please wait.
1
统 计 学 (第三版) 2008 作者 贾俊平 统计学
2
未来是不可预测的,不管人们掌握 多少信息,都不可能存在能作出正 确决策的系统方法。 ——C. R. Rao
统计名言 未来是不可预测的,不管人们掌握 多少信息,都不可能存在能作出正 确决策的系统方法。 ——C. R. Rao 2008年8月
3
第 10 章 时间序列预测 10.1 时间序列及其分解 10.2 时间序列预测的程序 10.3 平滑法预测 10.4 趋势预测
第 10 章 时间序列预测 时间序列及其分解 时间序列预测的程序 平滑法预测 趋势预测 自回归模型预测 多成分序列的预测
4
学习目标 时间序列的组成要素 时间序列的预测程序 移动平均和指数平滑预测 线性趋势和非线性趋势预测 自相关和自回归模型预测 多成分序列的预测
使用Excel和SPSS预测 2008年8月
5
下个月的消费者信心指数是多少? 消费者信心指数不仅仅是消费信心的反映,在某种程度上反映了消费者对整个宏观经济运行前景的看法
一些国家都把消费者信心指数作为经济运行的一项预警指标来看待。国家统计局定期公布这类数据 下表是国家统计局公布的2007年4月至2008年5月我国的消费者预期指数、消费者满意指数和消费者信心指数(%) 怎样预测下个月的消费者信心指数呢?首先需要弄清楚它在2007年4月至2008年5 月过去的这段时间里是如何变化的,找出其变化的模式。如果预期过去的变化模式在未来的一段时间里能够延续,就可以根据这一模式找到适当的预测模型并进行预测。本章介绍的内容就是有关时间序列的预测问题 2008年8月
6
下个月的消费者信心指数是多少? 日期 消费者预期指数 消费者满意指数 消费者信心指数 2007.04 98.8 92.4 96.2
99.1 93.0 96.7 100.0 93.6 97.4 99.2 99.9 93.3 97.3 99.6 92.9 96.9 96.5 98.7 92.0 96.0 99.5 93.1 98.6 91.2 95.6 96.8 90.5 94.3 97.1 90.7 94.5 96.6 90.1 94.0 97.0 90.2 2008年8月
7
第 10 章 时间序列预测 时间序列的组成要素
8
时间序列 (times series) 按时间顺序记录的一组数据 观察的时间可以是年份、季度、月份或其他任何时间形式
观测时间用 表示,观察值用 表示 2008年8月
9
时间序列的组成要素(components)
趋势(trend) 持续向上或持续向下的变动 季节变动(seasonal fluctuation) 在一年内重复出现的周期性波动 循环波动(Cyclical fluctuation) 非固定长度的周期性变动 随机性(irregular variations) 除去趋势、季节变动和周期波动之后的随机波动称为不规则波动 只含有随机波动而不存在趋势的序列也称为平稳序列(stationary series) 四种成分与序列的关系: Yi=Ti×Si×Ci×Ii 2008年8月
10
含有不同成分的时间序列 平稳 趋势 季节 季节与趋势 2008年8月
11
时间序列的成分 (例题分析) 【例】 1990年—2005年我国人均GDP、轿车产量、金属切削机床产量和棉花产量的时间序列。绘制图形观察其所包含的成分 2008年8月
12
时间序列的成分 (例题分析) (a) 人均GDP序列 (b) 轿车产量序列 (c)机床产量序列 (d) 棉花产量序列 2008年8月
13
第 10 章 时间序列预测 时间序列预测的程序 确定时间序列的成分 选择预测方法并进行评估
14
时间序列预测的程序 确定时间序列所包含的成分 找出适合此类时间序列的预测方法,并对可能的预测方法进行评估,以确定最佳预测方案
利用最佳预测方案进行预测 2008年8月
15
时间序列预测的程序 确定时间序列的成分
16
确定季节成分 (例题分析) 【例】下面是一家啤酒生产企业2000~2005年各季度的啤酒销售量数据。试根据这6年的数据绘制年度折叠时间序列图,并判断啤酒销售量是否存在季节成分 2008年8月
17
年度折叠时间序列图 (folded annual time series plot)
将每年的数据分开画在图上 若序列只存在季节成分,年度折叠序列图中的折线将会有交叉 若序列既含有季节成分又含有趋势,则年度折叠时间序列图中的折线将不会有交叉,而且如果趋势是上升的,后面年度的折线将会高于前面年度的折线,如果趋势是下降的,则后面年度的折线将低于前面年度的折线 2008年8月
18
时间序列预测的程序 选择预测方法并进行评估
19
预测方法的选择 否 是 否 是 是 否 时间序列数据 是否存在趋势 是否存在季节 是否存在季节 平滑法预测 简单平均法 移动平均法
指数平滑法 季节性预测法 季节多元回归模型 季节自回归模型 时间序列分解 趋势预测方法 线性趋势推测 非线性趋势推测 自回归预测模型 2008年8月
20
预测方法的评估 一种预测方法的好坏取决于预测误差的大小 预测误差是预测值与实际值的差距
度量方法有平均误差(mean error)、平均绝对误差(mean absolute deviation)、均方误差(mean square error)、平均百分比误差(mean percentage error)和平均绝对百分比误差(mean absolute percentage error) 较为常用的是均方误差 (MSE) 2008年8月
21
第 10 章 时间序列预测 平滑法预测 移动平均预测 指数平滑预测
22
平滑法预测 适合于只含有随机成分平稳序列 通过对时间序列进行平滑以消除其随机波动,因而也称为平滑法
主要有移动平均法(moving average)和指数平滑法(exponential smoothing)等,这些方法是 平滑法既可用于短期预测,也可以用于对时间序列进行平滑以描述序列的趋势(包括线性趋势和非线性趋势) 2008年8月
23
10.3 平滑法预测 移动平均预测
24
移动平均预测 (moving average)
选择一定长度的移动间隔,对序列逐期移动求得平均数作为下一期的预测值 将最近k期数据平均作为下一期的预测值 设移动间隔为k (1<k<t),则t+1期的移动平均预测值为 预测误差用均方误差(MSE) 来衡量 2008年8月
25
移动平均预测 (特点) 将每个观察值都给予相同的权数 只使用最近期的数据,在每次计算移动平均值时,移动的间隔都为k
主要适合对较为平稳的序列进行预测 对于同一个时间序列,采用不同的移动步长预测的准确性是不同的 选择移动步长时,可通过试验的办法,选择一个使均方误差达到最小的移动步长 2008年8月
26
移动平均预测 (例题分析) 【例】根据表11.1中的棉花产量数据,分别取移动间隔k=3和k=5进行移动平均预测,计算出预测误差,并将原序列和预测后的序列绘制成图形进行比较。 2008年8月
27
移动平均预测 (例题分析) 2008年8月
28
移动平均预测 (例题分析) 2008年8月
29
10.3 平滑法预测 指数平滑预测
30
指数平滑预测 (exponential smoothing)
对过去的观察值加权平均进行预测的一种方法 观察值时间越远,其权数也跟着呈现指数的下降,因而称为指数平滑 以一段时期的预测值与观察值的线性组合作为第t+1期的预测值,其预测模型为 Yt为第t期的实际观察值 Ft 为第t期的预测值 为平滑系数 (0 <<1) 2008年8月
31
指数平滑预测 (exponential smoothing)
在开始计算时,没有第1期的预测值F1,通常可以设F1等于第1期的实际观察值,即F1=Y1 第2期的预测值为 第3期的预测值为 2008年8月
32
指数平滑预测 (平滑系数 的确定) 不同的会对预测结果产生不同的影响 选择时,还应考虑预测误差
指数平滑预测 (平滑系数 的确定) 不同的会对预测结果产生不同的影响 当时间序列有较大的随机波动时,宜选较大的 ,以便能很快跟上近期的变化 当时间序列比较平稳时,宜选较小的 选择时,还应考虑预测误差 误差均方来衡量预测误差的大小 确定时,可选择几个进行预测,然后找出预测误差最小的作为最后的值 2008年8月
33
指数平滑预测 (例题分析) 【例】根据表11.1中的棉花产量数据,分别取=0.3和=0.5进行指数平滑预测,计算出预测误差,并将原序列和预测后的序列绘制成图形进行比较 2008年8月
34
指数平滑预测 (例题分析) 2008年8月
35
指数平滑预测 (例题分析) 2008年8月
36
第 10 章 时间序列预测 趋势预测 线性趋势预测 非线性趋势预测
37
趋势预测 根据时间序列变化的趋势选择适当的模型进行预测 主要适合于含有趋势的序列
趋势序列的预测方法主要有线性趋势(linear trend)预测、非线性趋势(non-linear trend)预测和自回归(autoregression)模型预测等 2008年8月
38
10.4 趋势模型预测 线性趋势预测
39
线性趋势预测 (linear trend) 随时间的推移而呈现出稳定增长或下降的线性变化(各期观测值按常数增长)
拟合一条线性趋势方程进行预测 t —时间变量 b0—趋势线在Y 轴上的截距 b1—斜率,表示时间 t 变动一个单位时观察值的平均变动量 2008年8月
40
线性趋势预测 (例题分析) 【例】根据表10.1中人均GDP数据,用直线趋势方程预测2006年的人均GDP,并给出各年的预测值和预测误差,将实际值和预测值绘制成图形进行比较 线性趋势方程: 预测的R2和标准误差:R2=0.9806 2005年人均GDP增长率的预测值 2008年8月
41
线性趋势预测 (例题分析) 2008年8月
42
线性趋势预测 (例题分析) 2008年8月
43
10.4 趋势模型预测 非线性趋势预测
44
指数曲线 (exponential curve)
时间序列以几何级数递增或递减 一般形式为 b0,b1为待定系数 采取“线性化”手段将其化为对数直线形式 根据最小二乘法,得到求解 lgb0、lgb1 再取其反对数,即得算术形式的b0和b1 2008年8月
45
指数曲线 (例题分析) 【例】根据表10.1中的轿车产量数据,用指数曲线预测2006年的轿车产量,并计算出各期的预测值和预测误差,将实际值和预测值绘制成图形进行比较 指数曲线趋势方程: 2005年轿车产量的预测值 2008年8月
46
用Excel中的GROWTH函数进行指数趋势预测
第1步:选择【fx】插入函数,并选择【统计】函数中的 GROWTH(known_y's,known_x's,new_x's,const)函数 第2步:当对话框出现时 在【Known_y‘s】中输入y的数据区域 在【known_x‘s】中输入x的数据区域 在【New_x‘s】中输入新的x的值或数据区域(如果省略 则假设它和 known_x's 相同) 在【Const】中输入TRUE 或省略,此时返回预测值 ;如果 const 为 FALSE,b0 将设为 1,此时 返回预测值 【注】若要同时返回一组预测值,则需要首先选择输出区域,然后同时按下【Ctrl+Shift+Enter】键 2008年8月
47
指数曲线 (例题分析) 2008年8月
48
指数曲线 (例题分析) 2008年8月
49
指数曲线与直线的比较 比一般的趋势直线有着更广泛的应用 可以反应现象的相对发展变化程度 不同序列的指数曲线可以进行比较
上例中,b1=1.2734表示1990—2005年轿车产量的年平均增长率为27.34% 不同序列的指数曲线可以进行比较 比较分析相对增长程度 2008年8月
50
修正指数曲线 (modified exponential curve)
在一般指数曲线的方程上增加一个常数项K 一般形式为 K,b0,b1 为待定系数 K > 0,b0 ≠ 0,0 < b1 ≠ 1 用于描述的现象:初期增长迅速,随后增长率逐渐降低,最终则以K为增长极限 2008年8月
51
修正指数曲线 (求解k,b0,b1 的三和法) 趋势值K无法事先确定时采用 将时间序列观察值等分为三个部分,每部分有m个时期
令预测值的三个局部总和分别等于原序列 观察值的三个局部总和 2008年8月
52
修正指数曲线 (求解k,b0,b1 的三和法) 设观察值的三个局部总和分别为S1,S2,S3 根据三和法求得 2008年8月
53
修正指数曲线 (例题分析) 【例】我国1990—2004年城镇新建住宅面积数据如右表所示。试确定修正指数曲线方程,计算出各期的预测值和预测误差,预测2005年的城镇新建住宅面积,并将原序列和各期的预测值序列绘制成图形进行比较 2008年8月
54
修正指数曲线 (例题分析) 2008年8月
55
修正指数曲线 (例题分析) 2008年8月
56
Gompertz 曲线 (Gompertz curve)
以英国统计学家和数学家 B·Gompertz 的名字而命名 一般形式为 K,b0,b1为待定系数 K > 0,0 < b0 ≠ 1,0 < b1 ≠ 1 描述的现象:初期增长缓慢,以后逐渐加快,当达到一定程度后,增长率又逐渐下降,最后接近一条水平线 两端都有渐近线,上渐近线为YK,下渐近线为Y= 0 2008年8月
57
多阶曲线 有些现象的变化形态比较复杂,它们不是按照某种固定的形态变化,而是有升有降,在变化过程中可能有几个拐点。这时就需要拟合多项式函数
当只有一个拐点时,可以拟合二阶曲线,即抛物线;当有两个拐点时,需要拟合三阶曲线;当有k-1个拐点时,需要拟合k阶曲线 k阶曲线函数的一般形式为 线性化后,根据最小二乘法求 2008年8月
58
多阶曲线 (例题分析) 三阶曲线方程: 2005年的预测值
【例】根据表11.1中的金属切削机床产量数据,拟合适当的趋势曲线,预测2006年的金属切削机床产量,并计算出各期的预测值和预测误差,将实际值和预测值绘制成图形进行比较 三阶曲线方程: 2005年的预测值 2008年8月
59
多阶曲线 (例题分析) 2008年8月
60
多阶曲线 (例题分析) 2008年8月
61
趋势线的选择 观察散点图 根据观察数据本身,按以下标准选择趋势线 3. 比较估计标准误差 一次差大体相同,配合直线
二次差大体相同,配合二次曲线 对数的一次差大体相同,配合指数曲线 一次差的环比值大体相同,配合修正指数曲线 对数一次差的环比值大体相同,配合Gompertz曲线 比较估计标准误差 2008年8月
62
第 10 章 时间序列预测 自回归模型预测 自相关及其检验 自回归预测
63
自回归模型预测 时间序列数据后期的观察值往往与它前面的观察值相关
可以想象2007年的人均GDP与2006年的人均GDP相关,2008年与2007年相关等等 如果仍然利用最小二乘回归进行预测就会产生一些问题,这时可采用自回归模型进行预测 2008年8月
64
自回归模型预测 自相关及其检验
65
自相关及其检验 (autocorrelation)
不同点的时间序列残差之间的相关称为自相关 时间序列的残差是时间序列的观察值与相应的预测值之差 对于大多数商业和经济序列来说,残差会出现连续的正值和连续的负值,也就是相邻的两个残差具有相同的正负号,时间序列残差之间的相关称为自相关 相邻两期(t期和t-1期)残差之间的相关称为一阶自相关 2008年8月
66
自相关及其检验 (自相关对预测的影响) 对于自相关序列应避免使用最小二乘法拟合的回归模型进行预测 将回归方法用于时间序列时应注意这一问题
最小二乘回归的基本假定之一就是残差是相互独立的随机变量 自相关显然破坏了这些假定,从而使回归系数的估计不再具有最小方差的性质 用最二乘模型进行预测时产生的误差比预期的要大 将回归方法用于时间序列时应注意这一问题 2008年8月
67
自相关及其检验 (D-W检验) 判断残差之间是否存在自相关的方法之一就是使用Durbin-Watson检验,简称D-W检验
对于双侧检验提出的假设为 H0:残差无自相关,H1:残差存在自相关 检验统计量为 检验时使用D-W检验统计量临界值表判断 2008年8月
68
自相关及其检验 (D-W检验统计量临界值表)
显著性水平为=0.05、样本量为n、自变量个数为k,统计量的临界值下限为dL和上限dU 2008年8月
69
自相关及其检验 (D-W检验的判别) 统计量的取值范围是0<d<4 若统计量d<dL,拒绝原假设,存在自相关
如果统计量d>dU,不拒绝原假设,没有证据表明存在自相关 如果dL<d<dU,属于不确定区,无法根据Durbin-Watson统计量作出判断 2008年8月
70
自相关及其检验 (例题分析) 统计量d=0.47<1.10,拒绝原假设,机床产量序列存在自相关
【例】根据表11.1中的金属机床产量序列,检验是否存在自相关 统计量d=0.47<1.10,拒绝原假设,机床产量序列存在自相关 2008年8月
71
自相关及其检验 (例题分析) 机床产量残差中明显存在连续正值和连续负值,存在自相关 2008年8月
72
自相关及其检验 (用SPSS计算检验统计量d )
【Analyze】【Regression - linear】 将因变量选入【Dependent】(本例为机床产量) 将自变量选入【Independent(s)】(本例为时间) 主对话框点击【Statistics】,选择【Residuals】中的【Durbin-Watson】,点击【Continue】回到主对话框点击【OK】 在输出结果中的“Model Summary”给出的统计量为0.470 2008年8月
73
自回归模型预测 自回归预测
74
自回归模型预测 (autoregression)
序列包含多种成分自回归是解决自相关序列的有效预测方法之一 它是利用观测值与以前时期的观测值之间的关系来预测值的一种多元回归方法 因变量是观测值Yt,自变量是因变量的滞后值Yt-1 ,Yt-2 ,Yt-3 ,…。看上去就像自己同自己回归,故名自回归 2008年8月
75
自回归模型预测 (autoregression)
自变量可以滞后一个时期、二个时期、三个时期或更多的时期 当前值与滞后一期值的回归称为一阶自回归 一阶AR模型: 当前值与滞后二期值的回归称为二阶自回归 二阶AR模型: 当前值与滞后p期值的回归称为k阶自回归 p阶AR模型: 是用最小二乘法估计的系数 2008年8月
76
自回归模型预测 (模型参数检验) 自回归模型的阶数越高,丢失的数据就越多 当数据不是很多时,高阶自回归模型的效果就不一定很好
实际应用中,选择自回归模型时可以先选择一个高阶的自回归模型,然后把那些不显著的参数去掉。这时就需要对模型中最高阶的自回归参数进行检验 2008年8月
77
自回归模型预测 (模型参数检验) 提出假设 H0:bp=0(最高阶参数不显著);H1:bp≠0(最高阶参数显著) 计算统计量
2008年8月
78
自回归模型预测 (例题分析) 【例】根据表11.1中的金属机床产量序列,建立自回归模型并进行预测,将原序列和预测值绘图进行比较
2008年8月
79
自回归模型预测 (例题分析) 预测值和预测误差 2008年8月
80
自回归模型预测 (例题分析) 2006年预测值 2008年8月
81
其他时序模型 类似于AR模型,可以考虑用当前值作为因变量,以预测时产生的残差e作为自变量进行回归,这样的回归模型称为移动平均(moving average)模型,简称MA模型。对于滞后q期的MA模型可表示为 将p阶AR模型和q阶MA模型混合起来,可以得到一个自回归移动平均(autoregression-moving average)模型,简称为ARMA模型,表示为 对ARMA模型的改进模型称为整合自回归移动平均(autoregression integrated moving average)模型,简称为ARIMA模型 对这些模型的进一步讨论,可参阅时间序列方面的书籍 2008年8月
82
第 10 章 时间序列预测 多成分序列的预测 季节性多元回归预测 分解预测
83
多成分序列的预测 序列包含多种成分 预测方法有 季节多元回归模型(seasonal multiple regression) 预测
季节自回归模型(seasonal autoregression)模型预测 分解(decomposition)预测等 分解预测是先将时间序列的各个成分依次分解出来,尔后再进行预测 2008年8月
84
多成分序列的预测 季节性多元回归预测
85
季节性多元回归预测 (seasonal multiple regression)
用虚拟变量表示季节的多元回归预测方法 若数据是按季度记录的,需要引入3个虚拟变量;按月记录的,则需要引入11个虚拟变量 季度数据的季节性多元回归模型可表示为 2008年8月
86
季节性多元回归预测 (系数的解释) b0—时间序列的平均值 b1—趋势成分的系数,表示趋势给时间序列带来的影响值
季节性多元回归预测 (系数的解释) b0—时间序列的平均值 b1—趋势成分的系数,表示趋势给时间序列带来的影响值 Q1、Q2、Q3—3个季度的虚拟变量 b2 、b3 、b4—每一个季度与参照的第4季度的平均差值 2008年8月
87
季节性多元回归预测 (例题分析) 【例】一家商场2003年~2005年各季度的销售额数据如下(单位:万元)。试用季节性多元回归模型预测2006年各季度的销售额 2008年8月
88
季节性多元回归预测 (年度折叠序列图) 绘制年度折叠时间序列图 销售序列中只含有季节成分 2008年8月
89
季节性多元回归预测 (引入虚拟变量) 2008年8月
90
季节性多元回归预测 (用Excel进行回归)
2008年8月
91
季节性多元回归预测 (系数的解释) 季节性多元回归模型 各个系数的含义 b0=3996.667表示平均销售额
季节性多元回归预测 (系数的解释) 季节性多元回归模型 各个系数的含义 b0= 表示平均销售额 b1=46.625表示每季度平均增加的销售额(趋势) b2= 表示第1季度的销售额比第4季度平均少 万元 b3= 表示第2季度的销售额比第4季度平均少 万元 b4= 表示第3季度的销售额比第4季度平均少 万元 2008年8月
92
季节性多元回归预测 (历史数据的预测) 2008年8月
93
季节性多元回归预测 (2006年的预测) 2008年8月
94
季节性多元回归预测 (实际值和预测值图) 2008年8月
95
多成分序列的预测 分解预测
96
分解预测 (预测步骤) 确定并分离季节成分 建立预测模型并进行预测 计算出最后的预测值 计算季节指数,以确定时间序列中的季节成分
将季节成分从时间序列中分离出去,即用每一个观测值除以相应的季节指数,以消除季节性 建立预测模型并进行预测 对消除季节成分的序列建立适当的预测模型,并根据这一模型进行预测 计算出最后的预测值 用预测值乘以相应的季节指数,得到最终的预测值 2008年8月
97
分解预测 (例题分析) 【例】下表是一家啤酒生产企业2000—2005年各季度的啤酒销售量数据。试计算各季的季节指数 朝日 BEER
2008年8月
98
分解预测 (例题分析) 2008年8月
99
分解预测 (第1步:确定并分离季节成分) 计算季节指数 以其平均数等于100%为条件而构成的反映季节变动的值
表示某一月份或季度的数值占全年平均数值的大小 如果现象的发展没有季节变动,则各期的季节指数应等于100% 季节变动的程度是根据各季节指数与其平均数(100%)的偏差程度来测定 2008年8月
100
分解预测 (第1步:确定并分离季节成分) 季节指数计算步骤
计算移动平均值(季度数据采用4项移动平均,月份数据采用12项移动平均),并将其结果进行“中心化”处理 计算移动平均的比值,也称为季节比率 将序列的各观察值除以相应的中心化移动平均值,然后再计算出各比值的季度(或月份)平均值,即季节指数 季节指数调整 各季节指数的平均数应等于1或100%,若根据第2步计算的季节比率的平均值不等于1时,则需要进行调整具体方法是:将第2步计算的每个季节比率的平均值除以它们的总平均值 2008年8月
101
分解预测 (第1步:确定并分离季节成分) 2008年8月
102
分解预测 (第1步:确定并分离季节成分) 2008年8月
103
分解预测 (第1步:确定并分离季节成分) 2008年8月
104
分解预测 (第1步:确定并分离季节成分) 分离季节成分:将原时间序列除以相应的季节指数
季节因素分离后的序列反映了在没有季节因素影响的情况下时间序列的变化形态 2008年8月
105
分解预测 (第1步:确定并分离季节成分) 季节性及其分离图 2008年8月
106
分解预测 (第2步:建立模型并进行预测) 线性趋势预测和最终预测值 2008年8月
107
分解预测 (第3步:计算出最后的预测值) 根据分离季节性因素的序列确定线性趋势方程 根据趋势方程进行预测 计算最终的预测值
该预测值不含季节性因素,即在没有季节因素影响情况下的预测值 计算最终的预测值 将回归预测值乘以相应的季节指数 2008年8月
108
分解预测 (第3步:计算出最后的预测值) 2006年最后的预测值 2008年8月
109
实际值和最终预测值图 2008年8月
110
本章小节 时间序列的组成要素 时间序列的预测程序 移动平均和指数平滑预测 线性趋势和非线性趋势预测 自相关和自回归模型预测 多成分序列的预测
使用Excel和SPSS预测 2008年8月
111
结 束 THANKS
Similar presentations