Download presentation
Presentation is loading. Please wait.
1
Lecture 5 : Chinese Processing
楊立偉教授
2
So Far What We Have Document Similarity Co-occurrence Classification
"a Bag of Words" Model + Term Weighting (TF-IDF) Vector Space Model (VSM) Co-occurrence Association Link analysis : Co-citation & Coupling Classification Naïve Bayes k Nearest Neighbors Support Vector Machine
3
Problems in Chinese Processing
"小明日記:今日王叔叔來我家玩媽媽,說我做完 作業後,可以吃點心。然後,王叔叔誇我作業做 的好,於是抱起了我媽,媽叫叔叔小心一點,之 後叔叔又親了我媽媽,也親了我。" "老師批復:拿回家讓你爸看看,是標點符號有問 題,還是你王叔叔和你媽媽有問題。"
4
Problems in Chinese Processing
新詞 (out-of-vocabulary, OOV) 九把刀拍了部新電影叫等一個人咖啡 斷詞 (term segmentation) 消除歧義 我國代表現在正面臨很大的壓力 全台大停電 不可以營利為目的 他才能非凡;他才能勝任
5
What’s the Difference in Chinese ?
Algorithms in English are based in “Term” 前述主要演算法均基於詞做運算 Document → Paragraph → Sentence → Term Some expand to Phrase 有些擴充至片語 Some change to n-gram 有些改用n-gram The major difference in Chinese Character range space is much larger 中文字元個數遠多過於其它語言 No obvious boundary between characters / terms. 中文字或詞之間無明顯分隔符號
6
What’s the Difference in Chinese ?
中文 英文 單位 字(元) Character 詞 片語 句子 段落 文件 字母 Letter 字 Word 片語 Phrase 句子 Sentence 段落 Paragraph 文件 Document 統計資料 BIG5: 常用字約5000個, 次常用字約8000個 Unicode: 約4萬個漢字 注音: 共376個音(不含四聲變化) CKIP: 二字以上約13萬詞 Webster Dictionary: 470,000
7
Problem in Chinese Processing (1)
Term Segmentation 斷詞 (i.e. 搶詞問題) Example 我國 代表 現在 正 面臨 很 大 的 壓力 我 到 達文西 博物館 Solution 1. 字典法:例如長詞優先法 2. 法則式:例如文法式、構詞法則、歧義解決法則 3. 訓練統計式:例如詞頻法 (最大詞頻組合) 等 4. 自動分類式:將斷詞轉為分類問題 Result 現今主要第 3 , 4 類方法, 正確率可達 9 成以上
8
Problem in Chinese Processing (2)
Part-of-Speech Tagging 詞性標定 Example 我國 代表 現在 正 面臨 很 大 的 壓力 Nc Na Nd Neqb Nv Dfa Na Na Na VC Na VK Nv T VK Nv VA De VC VH Di VH VJ A A D Da N… 名詞 V….動詞 D… 副詞 A 形容詞 T 語助詞
9
Problem in Chinese Processing (2)
Part-of-Speech Tagging 詞性標定 Solution 1. 訓練統計式: 例如馬可夫機率模型 2. 自動分類式: 將詞性標定轉為分類問題 Result 正確率可達 9 成以上 可衍生出許多應用 表:中研院平衡語料庫詞類標記
10
Problem in Chinese Processing (3)
Unknown Term 未知詞 (或稱Out-of-Vocabulary) Example 新鮮人倪安東見面簽唱會 歌迷熱情喊凍蒜 國際運動仲裁庭祕書長瑞伯表示世跆盟可拒仲裁 Solution 1. 先經過斷詞,再處理未知部份 未知部份以構詞法則處理,或n-gram統計學習 2. 不經過斷詞,直接以訓練統計式處理 Result 正確率可達 7~8 成 (含詞性標定)
11
Tool for Chinese Processing (1)
Yahoo 斷章取義 API 取得應用程式帳號 使用API (目前停用) 斷詞與詞性標註 文章關鍵字擷取
12
Tool for Chinese Processing (2)
eLand ETool 開放完整API 主要功能 自動關鍵詞 自動摘要 斷詞與詞性標定 情緒判定 試用展示
13
自動關鍵字 以n-gram,找出最長且最常結伴出現的字元串 需指定所謂 “最常出現” 的次數門檻值 以BACDBCDABACD為例
設定 threshold T=1 FinalList會得到 CD:3 BACD:2 代表擷取出兩個關鍵字
14
自動摘要 重新組合重要的句子 “句子” 作為單位 以關鍵詞計算每個句子的得分 由句子得分篩選固定比例的句子作為文章摘要
15
HMM 斷詞 Hidden Markov Model 統計式的模型 序列資料的描述 S0 S1 S2 P00 P01 P02 P10 P11
Gaussian distribution Ot Ot-1 Ot+1 Ot+2 (State) (Observation Value) Transition Prob. Observation Prob. S0 S1 S2 P00 P01 P02 P10 P11 P12 P20 P21 P22
16
HMM 斷詞 中文斷詞的應用 Ex. V N SHI N 缺乏 耐性 是 一
缺乏(V)耐性(N)是(SHI)一(N)項(N)莫大(A)的(D)致命傷(N) V N SHI N S0 S1 S2 Ot Ot-1 Ot+1 Ot+2 State : 詞性 Observation Value:詞 缺乏 耐性 是 一
17
HMM 斷詞 中文斷詞的應用 取得機率最高的路徑 V N A .. … 缺 乏 耐 性
18
情緒判別 A bag-of-words Okapi BM25 引人入勝 上好 方便 主流 太過 白目 document term set
一流 公道 引人入勝 方便 主流 叫好 卓越 … 引誘 太過 出錯 失常 白目 丟臉 劣質 Positive Terms Negative Terms document term set document length avg. document length
19
情緒判別 Associate Attitude 建立關聯態度詞庫 …這家代理商的服務一點也不周全… …這家代理商的服務一點也不周全…
親切(1.0) …這家代理商的服務一點也不周全… 服務 周全(1.0) 敷衍(-1.0) 態度反轉 傲慢(-1.0) …這家代理商的服務一點也不周全…
20
Discussions
21
Chinese Text Retrieval without Using a Dictionary (Chen et al, SIGIR97)
Segmentation Break a string of characters into words Chinese characters and words Most Chinese words consist of two characters (趙元任) 26.7% unigrams, 69.8% bigrams, 2.7% trigrams (北京,現代漢語頻率辭典) 5% unigrams, 75% bigrams, 14% trigrams, 6% others (Liu) Word segmentation statistical methods, e.g., mutual information statistics rule-based methods, e.g., morphological rules, longest-match rules, ... hybrid methods Hsin-Hsi Chen
22
Indexing Techniques Unigram Indexing Bigram Indexing Trigram Indexing
Break a sequence of Chinese characters into individual ones. Regard each individual character as an indexing unit. GB : 6763 characters Bigram Indexing Regard all adjacent pairs of hanzi characters in text as indexing terms. Trigram Indexing Regard all the consecutive sequence of three hanzi characters as indexing terms. Hsin-Hsi Chen
23
Examples Hsin-Hsi Chen
24
Indexing Techniques (Continued)
Statistical Indexing Collect occurrence frequency in the collection for all Chinese characters occurring at least once in the collection. Collect occurrence frequency in the collection for all Chinese bigrams occurring at lease once in the collection. Compute the mutual information for all Chinese bigrams. I(x,y)=log2(p(x,y)/(p(x)*p(y))) = log2((f(x,y)/N) /((f(x)/N)*(f(y)/N))) = log2((f(x,y)*N) /(f(x)*f(y))) Strongly related: much larger value Not related: close to 0 Negatively related: negative I(x,y)=log2(p(x,y)/ (p(x)*p(y))) =log2 (p(x)/ (p(x)*p(y)) =log2 (1/ *p(y)) I(x,y)=log2(p(x,y)/(p(x)*p(y))) =log2(p(x|y)/p(x)) =log2(p(x|y)/p(x))=0 Hsin-Hsi Chen
25
f(c1): the occurrence frequency value of the first Chinese character of a bigram
f(c2): the occurrence frequency value of the second Chinese character f(c1c2): the occurrence frequency value of a bigram I(c1,c2): mutual information I(c1,c2) >> 0, c1 and c2 have strong relationship I(c1,c2) ~ 0, c1 and c2 have no relationship I(c1,c2) << 0, c1 and c2 have complementrary relationship > 0 < 0 Hsin-Hsi Chen
26
3 5 2 9 7 4 6 1 Hsin-Hsi Chen
27
Segmentation as Classification
我國 代表 現在 正 面臨 很大 的 壓力 B E B E B E S B E B E S B E 九把刀 不 同意 B I E S B E
29
Training data : input features and the target
C-2 T-2 C-1 T-1 C1 T1 C2 T2 C0 T0 目標欄位 我 B 國 E 表 現 代 在 …
30
from "Chinese Word Segmentation by Classification of Characters", 2005
31
Appendix : Other Language Issues
楊立偉教授
32
Tokenization Input: “Friends, Romans and Countrymen” Output: Tokens
Each such token is now a candidate for further processing 正規化及語言處理 在此一階段就直接丟棄 (保留) 哪些資訊? 索引與查詢(分析)時的處理要一致
33
Tokenization Issues in tokenization:
Finland’s capital Finland? Finlands? Finland’s? Hewlett-Packard Hewlett and Packard as two tokens? San Francisco: one token or two? How do you decide it is one token? maneuver: 策略
34
Numbers 3/12/91 Mar. 12, 1991 55 B.C. B-52 My PGP key is 324a3df234cb23e Often, don’t index as text. But often very useful mixed with text: ex. 產品型號 Nikon D700 (One answer is using n-grams)
35
Tokenization: Language issues
L'ensemble one token or two? L ? L’ ? Le ? Want l’ensemble to match with un ensemble German noun compounds are not segmented Lebensversicherungsgesellschaftsangestellter ‘life insurance company employee’
36
Tokenization: language issues
Chinese and Japanese have no spaces between words: 莎拉波娃现在居住在美国东南部的佛罗里达。 Not always guaranteed a unique tokenization Further complicated in Japanese, with multiple alphabets intermingled 混合使用 Dates/amounts in multiple formats 斷詞 問題 フォーチュン500社は情報不足のため時間あた$500K(約6,000万円) Katakana 片假名 Hiragana 平假名 Kanji 漢字 Romaji 羅馬拼音
37
Normalization Need to “normalize” terms in indexed text as well as query terms into the same form We want to match U.S.A. and USA 索引與查詢(分析)時的處理要一致 Alternative is to have multiple tokenization mixed language processing and n-gram approach
38
Normalization: other languages
Accents: résumé vs. resume. Most important criterion: Even in languages that standardly have accents, users often may not type them How would you like to present in the final result ? German: Tuebingen vs. Tübingen Should be equivalent 7月30日 vs. 7/30
39
Case folding Reduce all letters to lower case
exception: upper case (in mid-sentence?) e.g., General Motors Fed vs. fed SAIL vs. sail One approach is to lower case everything in analysis, meanwhile to represent in the original form
40
Stop words With a stop list, you exclude from dictionary entirely the commonest words. Intuition: They have little semantic content: the, a, and, to, be They take a lot of space: ~30% of postings for top 30 But the trend is away from doing this: You need them for: Phrase queries: “King of Denmark” Various song titles, etc.: “Let it be”, “To be or not to be” “Relational” queries: “flights to London”
41
Thesauri and soundex Handle synonyms 同義字 and homonyms 同音字
Hand-constructed equivalence classes e.g., car = automobile color = colour Rewrite to form equivalence classes 原則:兩種方式,在索引時處理?或在查詢時處理? (1) Index such equivalences Ex. When the document contains automobile, index it under car as well (usually, also vice-versa) (2) expand query Ex. When the query contains automobile, look under car as well
42
Soundex Traditional class of heuristics to expand a query into phonetic equivalents Language specific – mainly for names E.g., chebyshev tchebycheff
43
Lemmatization Reduce inflectional/variant forms to base form E.g.,
am, are, is be car, cars, car's, cars' car the boy's cars are different colors the boy car be different color Lemmatization implies doing “proper” reduction to dictionary headword form
44
Stemming Reduce terms to their “roots” before indexing
“Stemming” suggest crude affix chopping 很粗略地將字首字尾去除 language dependent e.g., automate(s), automatic, automation all reduced to automat. for exampl compress and compress ar both accept as equival to compress for example compressed and compression are both accepted as equivalent to compress.
45
Porter’s algorithm Commonest algorithm for stemming English
Results suggest at least as good as other stemming options Conventions + 5 phases of reductions phases applied sequentially each phase consists of a set of commands sample convention: Of the rules in a compound command, select the one that applies to the longest suffix. 由一群合併或判斷規則所組成 → 挑選適用最長字尾的規則
46
Typical rules in Porter
sses ss ies i ational ate tional tion Weight of word sensitive rules (m>1) EMENT → replacement → replac cement → cement
47
Other stemmers Other stemmers exist, e.g., Lovins stemmer Single-pass, longest suffix removal (about 250 rules) 計算代價高 Do stemming and other normalizations help? help recall for some queries 有利找到資料 (檢出率上升) Ex. 找 意大利, 同時找出義大利 but harm precision on others 但可能會找到錯的資料 (精確率下降) Ex. 找 Steve Jobs 卻找到 steve’s job
Similar presentations