Download presentation
Presentation is loading. Please wait.
1
汇报什么? 任务:请你向上面介绍公司状况。
假定你是一个公司的财务经理,掌握了公司的所有数据,比如固定资产、流动资金、每一笔借贷的数额和期限、各种税费、工资支出、原料消耗、产值、利润、折旧、职工人数、职工的分工和教育程度等等。 任务:请你向上面介绍公司状况。 你能够把这些指标和数字都原封不动地摆出去吗? 当然不能。 你必须要把各个方面作出高度概括,用一两个指标简单明了地把情况说清楚。
2
特点:变量很多 主成分分析 在如此多的变量之中,有很多是相关的。人们希望能够找出它们的少数“代表”来对它们进行描述。
3
主成分分析(principal component analysis)和因子分析(factor analysis)是把变量维数降低以便于描述、理解和分析的方法。
4
成绩数据 100个学生的数学、物理、化学、语文、历史、英语的成绩如下表(部分)。
5
从本例可能提出的问题 1.能不能把这个数据的6个变量用一两个综合变量来表示呢? 2.这一两个综合变量包含有多少原来的信息呢?
3.能不能利用找到的综合变量来对学生排序呢? 这一类数据所涉及的问题可以推广到对企业,对学校进行分析、排序、判别和分类等问题。
6
主成分分析 例中的的数据点是六维的;也就是说,每个观测值是6维空间中的一个点。我们希望把6维空间用低维空间表示。
先假定只有二维,即只有两个变量,它们由横坐标和纵坐标所代表;因此每个观测值都有相应于这两个坐标轴的两个坐标值;如果这些数据形成一个椭圆形状的点阵(这在变量的二维正态的假定下是可能的) 那么这个椭圆有一个长轴和一个短轴。在短轴方向上,数据变化很少;在极端的情况,短轴如果退化成一点,那只有在长轴的方向才能够解释这些点的变化了;这样,由二维到一维的降维就自然完成了。
7
主成分分析 当坐标轴和椭圆的长短轴平行,那么代表长轴的变量就描述了数据的主要变化,而代表短轴的变量就描述了数据的次要变化。
但是,坐标轴通常并不和椭圆的长短轴平行。因此,需要寻找椭圆的长短轴,并进行变换,使得新变量和椭圆的长短轴平行。 如果长轴变量代表了数据包含的大部分信息,就用该变量代替原先的两个变量(舍去次要的一维),降维就完成了。 椭圆(球)的长短轴相差得越大,降维也越有道理。
9
主成分分析 正如二维椭圆有两个主轴,三维椭球有三个主轴一样,有几个变量,就有几个主成分。
选择越少的主成分,降维就越好。什么是标准呢?那就是这些被选的主成分所代表的主轴的长度之和占了主轴长度总和的大部分。 特征值>1 累计贡献率>0.8
10
主成分分析与因子分析的概念 由于实测的变量间存在一定的相关关系,因此有可能用较少数的综合指标分别综合存在于各变量中的各类信息,而综合指标之间彼此不相关,即各指标代表的信息不重叠。综合指标称为因子或主成分(提取几个因子),一般有两种方法:
11
主成分分析与因子分析是将多个实测变量转换为少数几个不相关的综合指标的多元统计分析方法
12
对于我们的数据,SPSS输出为 这里的Initial Eigenvalues就是这里的六个主轴长度,又称特征值(数据相关阵的特征值)。头两个成分特征值累积占了总方差的81.142%。后面的特征值的贡献越来越少。
13
特征值的贡献还可以从SPSS的所谓碎石图看出
14
怎么解释这两个主成分。前面说过主成分是原始六个变量的线性组合。是怎么样的组合呢?SPSS可以输出下面的表。
这里每一列代表一个主成分作为原来变量线性组合的系数(比例)。比如第一主成分作为数学、物理、化学、语文、历史、英语这六个原先变量的线性组合,系数(比例)为-0.806, , , 0.893, 0.825, 0.836。
15
如用x1,x2,x3,x4,x5,x6分别表示原先的六个变量,而用y1,y2,y3,y4,y5,y6表示新的主成分,那么,原先六个变量x1,x2,x3,x4,x5,x6与第一和第二主成分y1,y2的关系为: X1=-0.806y y2 X2=-0.674y y2 X3=-0.675y y2 X4= 0.893y y2 x5= 0.825y y2 x6= 0.836y y2 这些系数称为主成分载荷(loading),它表示主成分和相应的原先变量的相关系数。 比如x1表示式中y1的系数为-0.806,这就是说第一主成分和数学变量的相关系数为-0.806。 相关系数(绝对值)越大,主成分对该变量的代表性也越大。可以看得出,第一主成分对各个变量解释得都很充分。而最后的几个主成分和原先的变量就不那么相关了。
16
可以把第一和第二主成分的载荷点出一个二维图以直观地显示它们如何解释原来的变量的。这个图叫做载荷图。
17
该图左面三个点是数学、物理、化学三科,右边三个点是语文、历史、外语三科。图中的六个点由于比较挤,不易分清,但只要认识到这些点的坐标是前面的第一二主成分载荷,坐标是前面表中第一二列中的数目,还是可以识别的。
18
因子分析 主成分分析从原理上是寻找椭球的所有主轴。因此,原先有几个变量,就有几个主成分。
而因子分析是事先确定要找几个成分,这里叫因子(factor)(比如两个),那就找两个。 这使得在数学模型上,因子分析和主成分分析有不少区别。而且因子分析的计算也复杂得多。根据因子分析模型的特点,它还多一道工序:因子旋转(factor rotation);这个步骤可以使结果更好。 当然,对于计算机来说,因子分析并不比主成分分析多费多少时间。 从输出的结果来看,因子分析也有因子载荷(factor loading)的概念,代表了因子和原先变量的相关系数。但是在输出中的因子和原来变量相关系数的公式中的系数不是因子载荷,也给出了二维图;该图虽然不是载荷图,但解释和主成分分析的载荷图类似。
19
主成分分析与因子分析的公式上的区别 主成分分析 P312 因子分析(m<p) P314 因子得分 P315
20
对于我们的数据,SPSS因子分析输出为 这里,第一个因子主要和语文、历史、英语三科有很强的正相关;而第二个因子主要和数学、物理、化学三科有很强的正相关。因此可以给第一个因子起名为“文科因子”,而给第二个因子起名为“理科因子”。从这个例子可以看出,因子分析的结果比主成分分析解释性更强。
21
这两个因子的系数所形成的散点图(虽然不是载荷,在SPSS中也称载荷图,
可以直观看出每个因子代表了一类学科
22
计算因子得分 可以根据前面的因子得分公式(因子得分系数和原始变量的标准化值的乘积之和),算出每个学生的第一个因子和第二个因子的大小,即算出每个学生的因子得分f1和f2。 人们可以根据这两套因子得分对学生分别按照文科和理科排序。当然得到因子得分只是SPSS软件的一个选项(可将因子得分存为新变量、显示因子得分系数矩阵)
23
因子分析和主成分分析的一些注意事项 可以看出,因子分析和主成分分析都依赖于原始变量,也只能反映原始变量的信息。所以原始变量的选择很重要。
可以看出,因子分析和主成分分析都依赖于原始变量,也只能反映原始变量的信息。所以原始变量的选择很重要。 另外,如果原始变量都本质上独立,那么降维就可能失败,这是因为很难把很多独立变量用少数综合的变量概括。数据越相关,降维效果就越好。 在得到分析的结果时,并不一定会都得到如我们例子那样清楚的结果。这与问题的性质,选取的原始变量以及数据的质量等都有关系 在用因子得分进行排序时要特别小心,特别是对于敏感问题。由于原始变量不同,因子的选取不同,排序可以很不一样。
24
练习 学生对网络课程应效果的评价项目 完全同意 5 同意4 一般3 不同意2 完全不同意1
1 总体来说,我觉得网络在这门专业课程中发挥了非常大的作用 2 我宁愿去看书,也不愿意看网上的讲义 3 我认为完全通过网络根本无法把一门课程学好 4 网络课程很好地扩展了这门课的信息量 5 我非常喜欢通过网络课程进行学习 6 网络课程使这门课的学习变得更有趣了 7 通过网络课程进行学习,非常方便灵活 8 网络课程很好的促进了我对这门课程内容的理解 9 网络课程很好地促进了我与同学们的交流沟通 10 网络课程促进了我与老师的交流
25
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 1 5 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
26
SPSS实现(因子分析与主成分分析) 拿student.sav为例,选Analyze-Data Reduction-Factor进入主对话框; 把math、phys、chem、literat、history、english选入Variables,然后点击Extraction, 在Method选择一个方法(如果是主成分分析,则选Principal Components), 下面的选项可以随意,比如要画碎石图就选Scree plot,另外在Extract选项可以按照特征值的大小选主成分(或因子),也可以选定因子的数目; 之后回到主对话框(用Continue)。然后点击Rotation,再在该对话框中的Method选择一个旋转方法(如果是主成分分析就选None), 在Display选Rotated solution(以输出和旋转有关的结果)和Loading plot(以输出载荷图);之后回到主对话框(用Continue)。 如果要计算因子得分就要点击Scores,再选择Save as variables(因子得分就会作为变量存在数据中的附加列上)和计算因子得分的方法(比如Regression);之后回到主对话框(用Continue)。这时点OK即可。
Similar presentations