Presentation is loading. Please wait.

Presentation is loading. Please wait.

定义19.13:设p,qP(Y),若{p}╞q且{q}╞p,则称p,q语义等价,记为p │==│ q

Similar presentations


Presentation on theme: "定义19.13:设p,qP(Y),若{p}╞q且{q}╞p,则称p,q语义等价,记为p │==│ q"— Presentation transcript:

1 定义19.13:设p,qP(Y),若{p}╞q且{q}╞p,则称p,q语义等价,记为p │==│ q
(1)如果p和q语义等价,则xp│==│ xq (2)在p中将xq(x)的某些(不一定所有)出现替换为yq(y)而得到p'(这里y不在q(x)中出现),则p │==│ p' 定理19.4:设p,p1,p2P(Y),p1 │==│ p2,现在p中将p1的某些(不一定所有)出现替换为p2而得到的结果记为p',则p │==│ p'。

2 §3 谓词演算的形式证明 一、形式证明 P(Y)上的一阶谓词演算用Pred(Y)表示
§3 谓词演算的形式证明 一、形式证明 P(Y)上的一阶谓词演算用Pred(Y)表示 定义19.14:称A=A1∪A2∪A3∪A4∪A5 中的所有元素为Pred(Y)上的公理集。其中: A1={p→(q→p)|p,qP(Y)}; A2={(p→(q→r))→((p→q)→(p→r))|p,q,rP(Y)}; A3={p→p|pP(Y)}。 A4={x(p→q)→(p→xq)|p,qP(Y),xvar(p)} A5={xp(x)→p(t)|p(x)P(Y),项t对p(x)中的x是自由的}

3 除了MP规则外,还要用一个推理规则,这个规则在以后的论证中常会用到:对任意的x证明了p(x),则有xp(x)成立。这个推理规则称为全称推广规则,它使得在对一般的x证明了p(x)后,可推出xp(x)。在使用全称推广规则时必须仔细地陈述限制。全称推广规则也称为G规则。

4 定义19.15:设pP(Y),AP(Y),由假设A导出p的长度为n的证明是一组有限序列 p1,…,pn,这里piP(Y)(i=1,…,n),pn=p,而p1,…,pn-1是长度为n-1的由A导出pn-1的证明序列,并且:对所有kn, (1)pkA∪A,或者 (2)存在i,j(i,j<k),有pi=(pj→pk)。或者 (3)pk=xw(x),并且p1,…,pk-1的某个子序列pk1,…,pkr是一个由A的子集A0(xvar(A0))导出w(x)的证明(长度小于n)。

5 如果存在一个由A导出p的证明,则记为A┣p,且用Ded(A)表示满足A┣p所有p的全体。对于Ø┣p,简写为┣p,并称p为 Pred(Y)的定理。
例:{xp}┣xp, pP(Y) 根据定义,xp就是xp。 p1=xp 假设 p2=xp→xp A3 p3=xp p1, p2 MP p4=xp→p A5 p5=p p3, p4 MP p6=p→p A3 p7=p p5, p6 MP p8=xp p7 G规则(xvar({xp}))

6 例: 设yvar(p(x)),且p(x)中的自由变元x不会出现在y的辖域中。证明:{xp(x)}┣yp(y),这里p(x)P(Y).

7 定理19.5:(演绎定理)设AP=P(Y),设p,qP。则A┣p→q当且仅当A∪{p}┣q
存在A导出p→q的有限证明序列 p1,…,pn=p→q, 由MP规则即得. (2)若A∪{p}┣q 对证明序列长度用归纳法 其他与命题逻辑类似,主要考虑q=xr(x) 设A0是导出r(x)的假设集 (i)pA0 (ii)pA0

8 二、等价替换定理与代换定理 定义19.16:设p,qP(Y),若{p}┣q且{q}┣p,则称p,q语法等价,记为p┣┫q。 引理19.2:若p┣┫q,则xp┣┫xq 因为{p}┣q,由演绎定理知┣ p→q,同样有 ┣ q→p 然后分别证明{xp}┣xq, {xq}┣xp

9 定理19.6(等价替换定理):设p,p1,p2P(Y),p1 ┣┫p2,现在p中将p1的某些(不一定所有)出现替换为p2而得到的结果记为p',则p┣┫p'。
证明:对p在P(Y)中的层次l用归纳法 l=0,则p是原子公式或p=F, 因此p=p1,当用p1替换为p2而得到p', 则p1┣┫p2得p┣┫p',成立 对l >0,假设对一切l <k结论成立, 对l=k,除p=p1这种平凡情况外, 分以下几种情况 (1)p=(q→r) (2)p=xq

10 定理19.7(约束变元符可替换性):设在p中将xq(x)的某些(不一定所有)出现替换为yq(y)而得到p'(这里yvar(q(x)),且p(x)中的自由变元x不会出现在y的辖域中),则p┣┫p'。 定理19.8:在P(Y)中有: (1)p→q┣┫pq; (2)pq┣┫(pq)(pq); (3)pq┣┫(pq)(pq); (4)p┣┫p;

11 (5)xp(x)┣┫'xp(x),这里我们约定:用'和'分别表示和;
(6)pxq(x)┣┫x(pq(x)),xvar(p); (7)pxq(x)┣┫x(pq(x)),xvar(p) ; (8)xp(x)xq(x)┣┫x(p(x)q(x)); (9)xp(x)xq(x)┣┫x(p(x)q(x)); (10)1xp(x)2yq(y)┣┫1x2y(p(x)q(y)),xvar(q(y)),yvar(p(x)); (11)1xp(x)2yq(y)┣┫1x2y(p(x)q(y)),xvar(q(y)),yvar(p(x))。

12 作业:P257 18,21(1)


Download ppt "定义19.13:设p,qP(Y),若{p}╞q且{q}╞p,则称p,q语义等价,记为p │==│ q"

Similar presentations


Ads by Google