Download presentation
Presentation is loading. Please wait.
1
Speaker : YI-CHENG HUNG
Curriculum Learning for Heterogeneous Star Network Embedding via Deep Reinforcement Learning Source : WSDM 2018 Advisor : JIA-LING KOH Speaker : YI-CHENG HUNG Date:2018/04/24
2
Outline Introduction Method Experiment Conclusion
3
Outline Introduction Method Experiment Conclusion
4
Introduction-motivation
訓練模型 預測類型: 奇幻類型 NN的INPUT是embedding vector,要如何訓練一個足夠代表input的embedding vector? Embedding vector
5
Introduction-goal 如何得知最好的修課順序? Goal:在考試時拿到最好的成績 修課順序
6
Outline Introduction Method Experiment Conclusion
7
Method-framework 假設已經一經上過(A,A,B,B,C)的課程了 如何決定下一次的課程?
8
Method-Planning Module
9
Q-Learn η是學習率,決定此次誤差有多少被學習 Γ是折扣率,決定未來策略的比重 現實 估計
10
Method-framework
11
Method-Learning Module
12
Method-Integrating
13
Outline Introduction Method Experiment Conclusion
14
Experiment-dataset 多標籤類型會進行排除
15
Quantitative results in the unsupervised setting
16
Quantitative results in the semi-supervised setting
17
Performance w.r.t. training steps on the DBLP dataset.
18
Performance v.s. the running time.
19
Performance w.r.t. #simulations on the IMDB dataset.
20
Outline Introduction Method Experiment Conclusion
21
Conclusion Proposed a deep reinforcement learning based approach
Integrates the learning and planning strategies Experimental results proved the effectiveness and efficiency of our approach.
Similar presentations