Presentation is loading. Please wait.

Presentation is loading. Please wait.

沈彩万 重离子反应中 碎片质量分布的计算 浙江 · 湖州师范学院 湖州

Similar presentations


Presentation on theme: "沈彩万 重离子反应中 碎片质量分布的计算 浙江 · 湖州师范学院 湖州"— Presentation transcript:

1 沈彩万 重离子反应中 碎片质量分布的计算 浙江 · 湖州师范学院 湖州 2012.4.12-16
Y. Abe, D. Boilley, J. J. Shen

2 Outlook Introduction Two-step model in the fusion stage
Fragment mass distribution Conclusion

3 Compound Nucleus Theory
Commonly used model: Compound Nucleus Theory

4 Sketch map of the process
Binary Processes (DIC) Reseparation (Quasi-Fission) C. N. SHE Spontaneous decays (a, fission) n

5 Theories to describe the fusion state
Fluctuation-Dissipation theory (Abe,Bao,Shen,…) DNS (di-nuclear system) model (Schide, Li, Zhou, …) imQMD model

6 Pfusion = Psticking* Pform
Two-step Model including two-consecutive steps overcoming the barriers (1) Coulomb barrier; (2) Liquid drop barrier V Liquid-drop Energy Coulomb Energy 48Ca+238U RCB = 14.14fm RC = 11.86fm RLB = 9.5fm RC R RLB RCB Pfusion = Psticking* Pform

7 Sticking probability:
(1) Surface friction model (2) Empirical formula by Swiatecki [Swiatecki et al., PRC 71, (2005)]

8 Formation Probability
Formation probability: Pform (Using LD model) V Ec.m. VB Coulomb Potential Liquid Drop Potential Contact Point = Rp + Rt Rc R Pform PSticking

9 Parameters for the description of formation
q1 = R/R q2 = a p1 = pR/R p2 = pa a: asymmetric parameter, R0: spherical radius of the compound nucleus

10 Average value of the neck parameter

11 (F.H) (no F.H.) Criteria for fusion hindrance in radial evolution
If system evolves to spherical case: without fusion hindrance. If system evolves to two fragments: with fusion hindrance.

12 对称反应中液滴能随 z 的变化

13 Fusion hindrance area: (radial evolution)

14 Equation of motion for R and a
Langevin equaiton:

15 Tracks of motion with random force
Ek=50MeV

16 Formation and mass-fragment distribution
initial point with pk Ek=50MeV quasi-fission formation

17 Formation and mass-distribution probability
According to the friction model,the relative momentums are distributed in Gaussian form: For the fusion of heavy systems,  0 Probability for mass-fragment distribution

18 在质量分布中,通常以单位质量数的相关量表示:

19 238U + 26Mg Mass-distribution probability in the formation stage

20 Exp: W.Q. Shen, PRC (1987) 238U+16O U+26Mg U+32S

21 238U+35Cl U+40Ca U+65Zn

22 结果分析 1、理论计算较好符合实验。 2、中心偏移: 理论仅包含了两分裂情况,三分裂等多碎片分裂会分布中心左移。
2、中心偏移: 理论仅包含了两分裂情况,三分裂等多碎片分裂会分布中心左移。 3、两端差异:理论仅含准裂变,实验应含有散射等其他成分。 4、仅在复合阶段仅考虑液滴 能时无法给出细致结果。

23 进一步改进 1、考虑壳修正影响; 2、自洽考虑颈部自由度; 3、要与实验结果更好复合,还需 考虑其它形式引起的质量分布。

24 小结 1、两步模型不但能较好地计算重离子反应的熔合截面,还能给出准裂变的质量碎片分布。 2、若要更好地计算准裂变碎片分布,还需要将两步扩展至更多的自由度。 3、壳效应应该考虑在熔合过程中。

25 Thanks !


Download ppt "沈彩万 重离子反应中 碎片质量分布的计算 浙江 · 湖州师范学院 湖州"

Similar presentations


Ads by Google