An Introduction to Database System

Slides:



Advertisements
Similar presentations
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
Advertisements

第六章 数据库技术基础 本章要点  数据库系统概述 数据库系统概述  关系数据库 关系数据库  数据库设计 数据库设计.
Chapter 3: SQL.
2012年9月等级考试辅导 数据库设计基础.
计算机科学引论 数据库系统.
Database Theory and Application Database Theory and Application
An Introduction to Database System An Introduction to Database System
An Introduction to Database System
An Introduction to Database System
第七章 数据库设计 7.1 数据库设计概述 7.2 需求分析 7.3 概念结构设计 7.4 逻辑结构设计 7.5 数据库的物理设计
第六章 数据库设计.
Principle and Application of Database
第七章 数据库设计 7.1 数据库设计概述 7.2 需求分析 7.3 概念结构设计 7.4 逻辑结构设计 7.5 数据库的物理设计
第7章 数据库设计.
Database Technology and Application
Access数据库基础 系列教学课件 安丘市职业中专 雷云龙.
区级课题汇报 (初期) 汇报人:建平中学周宁医 2008年9月27日.
Database Principles & Applications
第5章 数据库基础 5.1 数据库系统概述 5.2 数据模型 5.3 关系模型 5.4 关系数据库 5.5 常见的关系数据库管理系统简介.
Oracle数据库 Oracle 子程序.
工作任务之: 1、“网上考试系统”数据库分析 2、“网上考试系统”数据库概要设计 3、“网上考试系统”数据库逻辑设计
第八章 数据库设计 8.1 数据库设计概述 8.2 需求分析 8.3 概念结构设计 8.4 逻辑结构设计 8.5 数据库的物理设计
刘红岩 清华大学 管理科学与工程系 第6章 ER模型向关系模型的转换 刘红岩 清华大学 管理科学与工程系
第7章 关系数据库规范化理论 7.1 函数依赖 7.2 关系规范化 7.3 关系模式的分解准则.
第8章 数据库设计 8.1 数据库设计概述 8.2 数据库需求分析 8.3 数据库结构设计 8.4 数据库行为设计 8.5 数据库的实施
全国计算机等级考试 二级基础知识 第二章 程序设计基础.
管理信息结构SMI.
元素替换法 ——行列式按行(列)展开(推论)
网络常用常用命令 课件制作人:谢希仁.
An Introduction to Database System
第17章 网站发布.
Online job scheduling in Distributed Machine Learning Clusters
逆向工程-汇编语言
数据库设计是信息系统的核心组成部分 从现实世界到数据世界的转换的过程
CPU结构和功能.
宁波市高校慕课联盟课程 与 进行交互 Linux 系统管理.
An Introduction to Database System An Introduction to Database System
数列.
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
VisComposer 2019/4/17.
实验四、TinyOS执行机制实验 一、实验目的 1、了解tinyos执行机制,实现程序异步处理的方法。
商业分析平台-语义元数据 用友集团技术中心 边传猛 2013年 11月 06日.
VB与Access数据库的连接.
Web安全基础教程
数据库原理及应用 《数据库原理及应用》课程组 荆楚理工学院.
成绩是怎么算出来的? 16级第一学期半期考试成绩 班级 姓名 语文 数学 英语 政治 历史 地理 物理 化学 生物 总分 1 张三1 115
第6章 数据库建模 大多数软件系统都需要处理大量数据,数据库是软件系统的重要组成部分,数据库也是软件系统的基础。在面向数据流的软件设计方法中,是以需求分析阶段产生的数据流图为基础,按一定的步骤映射成软件结构,并由此建立E-R图,确定数据库结构。而在面向对象的软件开发过程中,通常是先建立设计模型,然后将永久类及永久类之间的关系映射为数据库的表结构等,我们将在第7章的第9节介绍采用人工和建模工具的自动映射方法。
iSIGHT 基本培训 使用 Excel的栅栏问题
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
3.1.2 空间向量的数量积运算 1.了解空间向量夹角的概念及表示方法. 2.掌握空间向量数量积的计算方法及应用.
数据集的抽取式摘要 程龚, 徐丹云.
1.把下面的关系模式转化为E-R图 1)系(系号,系名,电话) 2)教师(工号,姓名,性别,年龄,系号)
1.2 子集、补集、全集习题课.
多层循环 Private Sub Command1_Click() Dim i As Integer, j As Integer
1.非线性规划模型 2.非线性规划的Matlab形式
第一章 绪论 1.1 引言 1.2 逻辑结构和存储结构 1.3 算法.
OpenStack vs CloudStack
分数再认识三 真假带分数的练习课.
GIS基本功能 数据存储 与管理 数据采集 数据处理 与编辑 空间查询 空间查询 GIS能做什么? 与分析 叠加分析 缓冲区分析 网络分析
第五章关系数据库设计理论 5.1 数据依赖 5.2 范式 5.3 关系模式的规范化.
An Introduction to Database System
第3章 关系数据库的规范化理论 本章导读: 关系规范化理论研究的是关系模式中各属性之间的依赖关系及其对关系模式性能的影响,探讨“好”的关系模式应该具备的性质,以及达到“好”的关系模式提供的方法。关系规范化理论提供了判断关系逻辑模式优劣的理论标准,是数据库设计的理论基础和关系模式算法工具,用于帮助数据库设计工程师预测和优化模式可能出现的问题。
第六章 Excel的应用 五、EXCEL的数据库功能 1、Excel的数据库及其结构 2、Excel下的数据排序 (1)Excel的字段名行
基于列存储的RDF数据管理 朱敏
C++语言程序设计 C++语言程序设计 第一章 C++语言概述 第十一组 C++语言程序设计.
上节复习(11.14) 1、方式2、方式0的特点? 2、定时/计数器的编程要点? 3、实验5方案优化问题.
数据库技术及应用 机械工业出版社 2019/7/24.
第8章 创建与使用图块 将一个或多个单一的实体对象整合为一个对象,这个对象就是图块。图块中的各实体可以具有各自的图层、线性、颜色等特征。在应用时,图块作为一个独立的、完整的对象进行操作,可以根据需要按一定比例和角度将图块插入到需要的位置。 2019/6/30.
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
多个Activity的使用 本讲大纲: 1、使用Bundle在Activity之间交换数据 2、调用另一个Activity并返回结果
Presentation transcript:

An Introduction to Database System 数据库系统概论 An Introduction to Database System 第七章 数据库设计 An Introduction to Database System

An Introduction to Database System 第七章 数据库设计 7.1 数据库设计概述 7.2 需求分析 7.3 概念结构设计 7.4 逻辑结构设计 7.5 数据库的物理设计 7.6 数据库实施和维护 7.7 小结 An Introduction to Database System

An Introduction to Database System 7.4 逻辑结构设计 逻辑结构设计的任务 概念结构是各种数据模型的共同基础 为了能够用某一DBMS实现用户需求,还必须 将概念结构进一步转化为相应的数据模型,这 正是数据库逻辑结构设计所要完成的任务。 An Introduction to Database System

An Introduction to Database System 7.4 逻辑结构设计 逻辑结构设计的步骤 将概念结构转化为一般的关系、网状、层次模型 将转化来的关系、网状、层次模型向特定DBMS支持下的数据模型转换 对数据模型进行优化 An Introduction to Database System

An Introduction to Database System 7.4 逻辑结构设计—三个步骤 逻辑结构设计 转化为一般数据模型 转化为特定DBMS支持下的据模型 优化模型 概念结 构设计 数据库 物理设计 基本E-R图 转换规则 特定DBMS的特点与限制 优化方法如规范化理论 逻辑 模型 An Introduction to Database System

An Introduction to Database System 7.4 逻辑结构设计 7.4.1 E-R图向关系模型的转换 7.4.2 数据模型的优化 7.4.3 设计用户子模式 An Introduction to Database System

An Introduction to Database System 7.4.1 E-R图向关系模型的转换 转换内容 转换原则 An Introduction to Database System

An Introduction to Database System E-R图向关系模型的转换(续) 转换内容 E-R图由实体、实体的属性和实体之间的联系 三个要素组成 关系模型的逻辑结构是一组关系模式的集合 将E-R图转换为关系模型:将实体、实体的属 性和实体之间的联系转化为关系模式。 An Introduction to Database System

An Introduction to Database System E-R图向关系模型的转换(续) 转换原则 ⒈ 一个实体型转换为一个关系模式。 关系的属性:实体型的属性 关系的码:实体型的码 例,学生实体可以转换为如下关系模式:   学生(学号,姓名,出生日期,所在系, 年级,平均成绩) 性别、宿舍、班级、档案材料、教师、课程、教室、教科书都分别转换为一个关系模式。 An Introduction to Database System

An Introduction to Database System 学生 学号 出生 日期 年级 所在系 平均 成绩 姓名 An Introduction to Database System

An Introduction to Database System E-R图向关系模型的转换(续) ⒉ 一个m:n联系转换为一个关系模式。 关系的属性:与该联系相连的各实体的码以及联系本身的属性 关系的码:各实体码的组合 例,“选修”联系是一个m:n联系,可以将它转换为如下关系模式,其中学号与课程号为关系的组合码:   选修(学号,课程号,成绩) An Introduction to Database System

An Introduction to Database System E-R图向关系模型的转换(续) ⒊ 一个1:n联系可以转换为一个独立的关系模式,也可以与n端对应的关系模式合并。 1) 转换为一个独立的关系模式 关系的属性:与该联系相连的各实体的码以 及联系本身的属性 关系的码:n端实体的码 An Introduction to Database System

An Introduction to Database System E-R图向关系模型的转换(续) ⒊ 一个1:n联系可以转换为一个独立的关系模式,也可以与n端对应的关系模式合并。 2) 与n端对应的关系模式合并 合并后关系的属性:在n端关系中加入1端关系的码和联系本身的属性 合并后关系的码:不变 可以减少系统中的关系个数,一般情况下更倾向于采用这种方法 An Introduction to Database System

An Introduction to Database System E-R图向关系模型的转换(续) 例,“组成”联系为1:n联系。 将其转换为关系模式的两种方法: 1)使其成为一个独立的关系模式:   组成(学号,班级号) 2)将其学生关系模式合并: 学生(学号,姓名,出生日期,所在系, 年级,班级号,平均成绩) An Introduction to Database System

An Introduction to Database System E-R图向关系模型的转换(续) ⒋ 一个1:1联系可以转换为一个独立的关系模式,也可以与任意一端对应的关系模式合并。 1) 转换为一个独立的关系模式 关系的属性:与该联系相连的各实体的码 以及联系本身的属性 关系的候选码:每个实体的码均是该关系 的候选码 An Introduction to Database System

An Introduction to Database System E-R图向关系模型的转换(续) ⒋ 一个1:1联系可以转换为一个独立的关系模式,也可以与任意一端对应的关系模式合并。 2) 与某一端对应的关系模式合并 合并后关系的属性:加入对应关系的码和联 系本身的属性 合并后关系的码:不变 An Introduction to Database System

An Introduction to Database System E-R图向关系模型的转换(续) 例,“管理”联系为1:1联系,可以有三种转换方法: (1)转换为一个独立的关系模式: 管理(职工号,班级号) 或 管理(职工号,班级号) (2)“管理”联系与班级关系模式合并,则只需在班级关系中加入教师关系的码,即职工号:    班级:(班级号,学生人数,职工号) (3)“管理”联系与教师关系模式合并,则只需在教师关系中加入班级关系的码,即班级号: 教师:(职工号,姓名,性别,职称,班级号, 是否为优秀班主任) An Introduction to Database System

An Introduction to Database System E-R图向关系模型的转换(续) 注意: 从理论上讲,1:1联系可以与任意一端对应的关系模式合并。 但在一些情况下,与不同的关系模式合并效率会大不一样。因此究竟应该与哪端的关系模式合并需要依应用的具体情况而定。 由于连接操作是最费时的操作,所以一般应以尽量减少连接操作为目标。 例如,如果经常要查询某个班级的班主任姓名,则将管理联系与教师关系合并更好些。 An Introduction to Database System

An Introduction to Database System E-R图向关系模型的转换(续) ⒌ 三个或三个以上实体间的一个多元联系转换为一个关系模式。 关系的属性:与该多元联系相连的各实体的码以及联系本身的属性 关系的码:各实体码的组合 例,上课地点(课程号,教师号,学号,教室号) An Introduction to Database System

An Introduction to Database System E-R图向关系模型的转换(续) ⒍ 同一实体集的实体间的联系,即自联系,也可按上述1:1、1:n和m:n三种情况分别处理。 例,如果教师实体集内部存在领导与被领导的1:n自联系,我们可以将该联系与教师实体合并,这时主码职工号将多次出现,但作用不同,可用不同的属性名加以区分: 教师:{职工号,姓名,性别,职称,系主任} An Introduction to Database System

An Introduction to Database System E-R图向关系模型的转换(续) ⒎ 具有相同码的关系模式可合并。 目的:减少系统中的关系个数。 合并方法:将其中一个关系模式的全部属性加入到另一个关系模式中,然后去掉其中的同义属性(可能同名也可能不同名),并适当调整属性的次序。 An Introduction to Database System

An Introduction to Database System E-R图向关系模型的转换(续) 例,“拥有”关系模式:  拥有(学号,档案号) 与学生关系模式: 学生(学号,姓名,出生日期,所在系,年级, 班级号,平均成绩) 都以学号为码,可以将它们合并为一个关系模式:  学生(学号,姓名,档案号,出生日期,所在系, 年级,班级号,平均成绩) An Introduction to Database System

An Introduction to Database System E-R图向关系模型的转换(续) 实例 按照上述七条原则,学生管理子系统中的18个实体和联系可以转换为下列关系模型: 学生(学号,姓名,性别,出生日期,所在系, 年级,班级号,平均成绩,档案号) 性别(性别,宿舍楼) 宿舍(宿舍编号,地址,性别,人数)  班级(班级号,学生人数) 教师(职工号,姓名,性别,职称,班级号, 是否为优秀班主任)   An Introduction to Database System

An Introduction to Database System E-R图向关系模型的转换(续) 教学(职工号,学号)   课程(课程号,课程名,学分,教室号)   选修(学号,课程号,成绩)   教科书(书号,书名,价钱)   教室(教室编号,地址,容量)   讲授(课程号,教师号,书号)   档案材料(档案号,……) An Introduction to Database System

An Introduction to Database System 7.4 逻辑结构设计 7.4.1 E-R图向关系模型的转换 7.4.2 数据模型的优化 7.4.3 设计用户子模式 An Introduction to Database System

An Introduction to Database System 7.4.2 数据模型的优化 数据库逻辑设计的结果不是唯一的。 得到初步数据模型后,还应该适当地修改、 调整数据模型的结构,以进一步提高数据 库应用系统的性能,这就是数据模型的优 化。 关系数据模型的优化通常以规范化理论为 指导。 An Introduction to Database System

An Introduction to Database System 数据模型的优化(续) 优化数据模型的方法 ⒈ 确定数据依赖 按需求分析阶段所得到的语义,分别写出每个关系模式内部各属性之间的数据依赖以及不同关系模式属性之间数据依赖。 An Introduction to Database System

An Introduction to Database System 数据模型的优化(续) 例,课程关系模式内部存在下列数据依赖:    课程号→课程名    课程号→学分   选修关系模式中存在下列数据依赖:    (学号,课程号)→成绩 An Introduction to Database System

An Introduction to Database System 数据模型的优化(续) 学生关系模式中存在下列数据依赖:   学号→姓名   学号→性别   学号→出生日期   学号→所在系 学号→年级   学号→班级号   学号→平均成绩   学号→档案号 An Introduction to Database System

An Introduction to Database System 数据模型的优化(续) 学生关系模式的学号与选修关系模式的学号之间存在数据依赖: 学生.学号→选修.学号   An Introduction to Database System

An Introduction to Database System 数据模型的优化(续) ⒉ 对于各个关系模式之间的数据依赖进行极小化处理,消除冗余的联系。 An Introduction to Database System

An Introduction to Database System 数据模型的优化(续) ⒊ 按照数据依赖的理论对关系模式逐一进行分析,考查是否存在部分函数依赖、传递函数依赖、多值依赖等,确定各关系模式分别属于第几范式。 An Introduction to Database System

An Introduction to Database System 数据模型的优化(续) ⒋ 按照需求分析阶段得到的各种应用对数据处理的要求,分析对于这样的应用环境这些模式是否合适,确定是否要对它们进行合并或分解。 An Introduction to Database System

An Introduction to Database System 数据模型的优化(续) 并不是规范化程度越高的关系就越优。 当一个应用的查询中经常涉及到两个或多个关系模式的属性时,系统必须经常地进行联接运算,而联系运算的代价是相当高的,可以说关系模型低效的主要原因就是做联接运算引起的,因此在这种情况下,第二范式甚至第一范式也许是最好的。 An Introduction to Database System

An Introduction to Database System 数据模型的优化(续) 非BCNF的关系模式虽然从理论上分析会存在不同程度的更新异常,但如果在实际应用中对此关系模式只是查询,并不执行更新操作,则就不会产生实际影响。 对于一个具体应用来说,到底规范化进行到什么程度,需要权衡响应时间和潜在问题两者的利弊才能决定。一般说来,第三范式就足够了。 An Introduction to Database System

An Introduction to Database System 数据模型的优化(续) 例:在关系模式 学生成绩单(学号,英语,数学,语文,平均成绩) 中存在下列函数依赖:   学号→英语   学号→数学   学号→语文   学号→平均成绩 (英语, 数学, 语文)→平均成绩 An Introduction to Database System

An Introduction to Database System 数据模型的优化(续) 显然有: 学号→(英语,数学,语文) 因此该关系模式中存在传递函数信赖,是2NF关系。 虽然平均成绩可以由其他属性推算出来,但如果应用中需要经常查询学生的平均成绩,为提高效率,我们仍然可保留该冗余数据,对关系模式不再做进一步分解。 An Introduction to Database System

An Introduction to Database System 数据模型的优化(续) ⒌ 按照需求分析阶段得到的各种应用对数据处理的要求,对关系模式进行必要的分解或合并,以提高数据操作的效率和存储空间的利用率 常用分解方法 水平分解 垂直分解 An Introduction to Database System

An Introduction to Database System 数据模型的优化(续) 水平分解 什么是水平分解 把(基本)关系的元组分为若干子集合,定义每个子集合为一个子关系,以提高系统的效率。 An Introduction to Database System

An Introduction to Database System 数据模型的优化(续) 水平分解的适用范围 1. 满足“80/20原则”的应用 80/20原则:一个大关系中,经常被使用的数据只是关系的一部分,约20% 把经常使用的数据分解出来,形成一个子关系,可以减少查询的数据量。 An Introduction to Database System

An Introduction to Database System 数据模型的优化(续) 水平分解的适用范围 2. 并发事务经常存取不相交的数据 如果关系R上具有n个事务,而且多数事务存取的数据不相交,则R可分解为少于或等于n个子关系,使每个事务存取的数据对应一个关系。 An Introduction to Database System

An Introduction to Database System 数据模型的优化(续) 垂直分解 什么是垂直分解 把关系模式R的属性分解为若干子集合,形成若干子关系模式。 垂直分解的原则 经常在一起使用的属性从R中分解出来形成一个子关系模式。 An Introduction to Database System

An Introduction to Database System 数据模型的优化(续) 垂直分解的优点 可以提高某些事务的效率 垂直分解的缺点 可能使另一些事务不得不执行连接操作, 从而降低了效率。 An Introduction to Database System

An Introduction to Database System 数据模型的优化(续) 垂直分解的适用范围 取决于分解后R上的所有事务的总效率是否得到了提高。 进行垂直分解的方法 简单情况:直观分解 复杂情况:用第六章中的模式分解算法 垂直分解必须不损失关系模式的语义(保持无损连接性和保持函数依赖)。 An Introduction to Database System

An Introduction to Database System 7.4 逻辑结构设计 7.4.1 E-R图向关系模型的转换 7.4.2 数据模型的优化 7.4.3 设计用户子模式 An Introduction to Database System

An Introduction to Database System 7.4.3 设计用户子模式 定义数据库模式主要是从系统的时间效率、空间效率、易维护等角度出发。 定义用户外模式时应该更注重考虑用户的习惯与方便。包括三个方面: An Introduction to Database System

An Introduction to Database System 设计用户子模式(续) (1) 使用更符合用户习惯的别名 合并各分E-R图曾做了消除命名冲突的工作,以使数据库系统中同一关系和属性具有唯一的名字。这在设计数据库整体结构时是非常必要的。 但对于某些局部应用,由于改用了不符合用户习惯的属性名,可能会使他们感到不方便, An Introduction to Database System

An Introduction to Database System 设计用户子模式(续) (1) 使用更符合用户习惯的别名(续) 因此在设计用户的子模式时可以重新定义某些属性名,使其与用户习惯一致。 当然,为了应用的规范化,我们也不应该一味地迁就用户。 例:负责学籍管理的用户习惯于称教师模式的职工号为教师编号。因此可以定义视图,在视图中职工号重定义为教师编号 An Introduction to Database System

An Introduction to Database System 设计用户子模式(续) (2) 针对不同级别的用户定义不同的外模式,以满足系统对安全性的要求。 An Introduction to Database System

An Introduction to Database System 设计用户子模式(续) 例: 教师关系模式中包括职工号、姓名、性别、出生日期、婚姻状况、学历、学位、政治面貌、职称、职务、工资、工龄、教学效果等属性。 学籍管理应用只能查询教师的职工号、姓名、性别、职称数据; 课程管理应用只能查询教师的职工号、姓名、性别、学历、学位、职称、教学效果数据; 教师管理应用则可以查询教师的全部数据。 An Introduction to Database System

An Introduction to Database System 设计用户子模式(续) 定义两个外模式: 教师_学籍管理(职工号,姓名,性别,职称) 教师_课程管理(工号,姓名,性别,学历, 学位,职称,教学效果) 授权学籍管理应用只能访问教师_学籍管理视图 授权课程管理应用只能访问教师_课程管理视图 授权教师管理应用能访问教师表 这样就可以防止用户非法访问本来不允许他们查询的数据,保证了系统的安全性。 An Introduction to Database System

An Introduction to Database System 设计用户子模式(续) (3) 简化用户对系统的使用 如果某些局部应用中经常要使用某些很复杂的查询,为了方便用户,可以将这些复杂查询定义为视图。 An Introduction to Database System

An Introduction to Database System 逻辑结构设计小结 任务 将概念结构转化为具体的数据模型 逻辑结构设计的步骤 将概念结构转化为一般的关系、网状、层次模型 将转化来的关系、网状、层次模型向特定DBMS支持下的数据模型转换 对数据模型进行优化 设计用户子模式 An Introduction to Database System

An Introduction to Database System 逻辑结构设计小结 E-R图向关系模型的转换内容 将E-R图转换为关系模型:将实体、实体的属 性和实体之间的联系转化为关系模式。 An Introduction to Database System

An Introduction to Database System 逻辑结构设计小结 E-R图向关系模型的转换原则 ⒈ 一个实体型转换为一个关系模式。 ⒉ 一个m:n联系转换为一个关系模式。 ⒊ 一个1:n联系可以转换为一个独立的关系模式,也可以与n端对应的关系模式合并。 ⒋ 一个1:1联系可以转换为一个独立的关系模式,也可以与任意一端对应的关系模式合并。 An Introduction to Database System

An Introduction to Database System 逻辑结构设计小结 E-R图向关系模型的转换原则 ⒌ 三个或三个以上实体间的一个多元联系转换为一个关系模式。 ⒍ 同一实体集的实体间的联系,即自联系,也可按上述1:1、1:n和m:n三种情况分别处理。 ⒎ 具有相同码的关系模式可合并。 An Introduction to Database System

An Introduction to Database System 逻辑结构设计小结 优化数据模型的方法 ⒈ 确定数据依赖 ⒉ 对于各个关系模式之间的数据依赖进行极小化处理,消除冗余的联系。 ⒊ 确定各关系模式分别属于第几范式。 ⒋ 分析对于应用环境这些模式是否合适,确定是否要对它们进行合并或分解。 ⒌ 对关系模式进行必要的分解或合并 An Introduction to Database System

An Introduction to Database System 逻辑结构设计小结 设计用户子模式 1. 使用更符合用户习惯的别名 2. 针对不同级别的用户定义不同的外模式,以满足 系统对安全性的要求。 3. 简化用户对系统的使用 An Introduction to Database System

An Introduction to Database System 下课了。。。 攀 登 休息一会儿。。。 An Introduction to Database System