第 二讲 思想方法概述 角度一 专题一 应用角度例析 角度二 角度三 通法归纳领悟 专题专项训练
1.数形结合的含义 (1)数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法. 数形结合思想通过“以形助数,以数辅形”,使复杂问题简单化,抽象问题具体化,能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合.
(2)数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数形之间的联系,即以形作为手段,数作为目的,比如应用函数的图像来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.
2.数形结合的途径 (1)通过坐标系“形题数解”: 借助于直角坐标系、复平面,可以将几何问题代数化.这一方法在解析几何中体现的相当充分(在高考中主要也是以解析几何作为知识载体来考查的).值得强调的是,“形题数解”时,通过辅助角引入三角函数也是常常运用的技巧(这是因为三角公式的使用,可以大大缩短代数推理).
实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图像的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义.如等式(x-2)2+(y-1)2=4,表示坐标平面内以(2,1)为圆心,以2为半径的圆.
(2)通过转化构造“数题形解”: 许多代数结构都有着相应的几何意义,据此,可以将数与形进行巧妙地转化.例如,将a(a>0)与距离互化;将a2与面积互化,将a2+b2+ab=a2+b2-2|a||b|cos θ(θ=60°或θ=120°)与余弦定理沟通;将a≥b≥c>0且b+c>a中的a、b、c与三角形的三边沟通;将有序实数对(或复数)和点沟通;将二元一次方程与直线、将二元二次方程与相应的圆锥曲线对应等等.这种代数结构向几何结构的转化常常表现为构造一个图形(平面的或立体的).另外,函数的图像也是实现数形转化的有效工具之一,正是基于此,函数思想和数形结合思想经常相互渗透,演绎出解题捷径.
利用数形结合讨论方程的解或图像交点
图1
图2 [答案] (1)B (2)(0,1)∪(1,4)
(1)讨论方程的解(或函数的零点)可构造两个函数,使问题转化为讨论两曲线的交点问题,但用此法讨论方程的解一定要注意图像的准确性、全面性,否则会得到错解. (2)正确作出两个函数的图像是解决此类问题的关键,数形结合应以快和准为原则而采用,不要刻意去数形结合.
解析:选 依题意得,函数f(x)是以2为周期的函数,在同一坐标系下画出函数y=f(x)与函数y=g(x)的图像,结合图像得,当x∈[-5,5]时,它们的图像的公共点共有8个,即函数h(x)=f(x)-g(x)在区间[-5,5]内的零点的个数是8. C
利用数形结合解不等式或求参数问题
[解析] (1)在同一坐标系中,分别作出y=log2(-x),y=x+1的图像,由图可知,x的取值范围是(-1,0).
解含参数的不等式时,由于涉及到参数,往往需要讨论,导致运算过程繁琐冗长 解含参数的不等式时,由于涉及到参数,往往需要讨论,导致运算过程繁琐冗长.如果题设与几何图形有联系,那么利用数形结合的方法,问题将会顺利地得到解决.
2.当x∈(1,2)时,不等式(x-1)2<logax恒成立,则a的取值范 围为 ( ) A.(2,3] B.[4,+∞) C.(1,2] D.[2,4) 解析:选 设y1=(x-1)2,y2=logax,则 y1的图像为如右图所示的抛物线.要使对 一切x∈(1,2),y1<y2恒成立,显然a>1,并 且只需当x=2时,logax≥1,所以a≤2, 所以1<a≤2. C
3.(2012·安徽高考)若函数f(x)=|2x+a|的单调递增区间是 答案:-6
利用数形结合求最值
[思路点拨] (1)根据a·b=0,可化简(a-c)·(b-c)= -(a+b)·c+1,可根据向量加法的几何意义作图,利用向量a+b与c的位置关系寻找问题的结论. (2)分式形式的函数的最值问题常考虑构造斜率模型求解,常常是过一个定点和一个动点的直线斜率.
[答案] (1)D (2)D
1.应用数形结合的思想应注意以下数与形的转化 (1)集合的运算及韦恩图; (2)函数及其图像; (3)数列通项及求和公式的函数特征及函数图像; (4)方程(多指二元方程)及方程的曲线; (5)对于研究距离、角或面积的问题,直接从几何图形入手进行求解即可; (6)对于研究函数、方程或不等式(最值)的问题,可通过函数的图像求解(函数的零点、顶点是关键点),做好知识的迁移与综合运用.
2.运用数形结合的思想分析解决问题时,应把握以下三个原则 (1)等价性原则: 在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞,有时,由于图形的局限性,不能完整的表现数的一般性,这时图形的性质只能是一种直观而浅显的说明,但它同时也是抽象而严格证明的诱导. (2)双向性原则: 在数形结合时,既要进行几何直观的分析,又要进行代数抽象的探索,两方面相辅相成,仅对代数问题进行几何分析(或仅对几何问题进行代数分析)在许多时候是很难行得通的.
例如,在解析几何中,我们主要是运用代数的方法来研究几何问题,但是在许多时候,若能充分地挖掘利用图形的几何特征,将会使得复杂的问题简单化. (3)简单性原则: 就是找到解题思路之后,至于用几何方法还是用代数方法或者兼用两种方法来叙述解题过程,则取决于哪种方法更为简单,而不是去刻意追求代数问题运用几何方法,几何问题运用代数方法.
点击下图进入 “专题专顼训练”