分形几何 ——数学与艺术结合的明珠.

Slides:



Advertisements
Similar presentations
因数与倍数 2 、 5 的倍数的特征
Advertisements

第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
人教版小学数学六年级下册 立体图形的整理和复习 ——体积 广州市越秀区沙涌南小学 杨泳茹.
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
《解析几何》 乐山师范学院 0 引言 §1 二次曲线与直线的相关位置.
丰富的图形世界(2).
Computer Graphics 第八章 分形几何.
10.2 立方根.
分数乘法.
四种命题 2 垂直.
第四章 图形的表示与数据结构 如何在计算机中建立恰当的模型表示不同图形对象。
第六章 定积分 第一节 定积分的概念 第二节 微积分基本公式 第三节 定积分的积分法.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
四年级数学 用字母表示数量关系和计算公式 制作:奔马 QQ
八年级下数学课题学习 格点多边形的面积计算 数格点 算面积.
探索三角形相似的条件(2).
数学实验之十二 迭代(2)---分形 中国科学技术大学数学系 陈发来.
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
北师大版三年级数学下册 分数比大小.
1.1特殊的平行四边形 1.1菱形.
2.1.2 空间中直线与直线 之间的位置关系.
平行四边形的性质 灵寿县第二初级中学 栗 彦.
第一章 函数与极限.
第二十七章 相 似 27.2 相似三角形 相似三角形的性质.
线段的有关计算.
正方形 ——计成保.
第九章 数项级数 §9.1 级数的收敛性 §9.2 正项级数 §9.3 一般项级数.
2.6 直角三角形(二).
相似三角形 石家庄市第十中学 刘静会 电话:
第四章 四边形性质探索 第五节 梯形(第二课时)
⑴当∠MBN绕点B旋转到AE=CF时(如图1),比较AE+CF与EF的大小关系,并证明你的结论。
§1体积求法 一、旋转体的体积 二、平行截面面积为已知的立体的体积 三、小结.
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
四边形分类.
第四章 一元函数的变化性态(III) 北京师范大学数学学院 授课教师:刘永平.
3.1.2 空间向量的数量积运算 1.了解空间向量夹角的概念及表示方法. 2.掌握空间向量数量积的计算方法及应用.
北师大版《数学》五年级上册 组合图形面积.
北师大版《数学》五年级上册 组合图形面积.
人教版小学数学三年级上册 认识几分之几 gjq.
13.3 等腰三角形 (第3课时).
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
第4课时 绝对值.
多层循环 Private Sub Command1_Click() Dim i As Integer, j As Integer
“七巧板”是我国古代人民创造的益智游戏流传到世界上不少国家,被称为“东方魔板”,它是用七块不同形状和大小不同的木板构成图形的游戏。
空间平面与平面的 位置关系.
静定结构位移计算 ——应用 主讲教师:戴萍.
平行四边形的性质 鄢陵县彭店一中 赵二歌.
立体图形的表面积和体积 小学数学总复习.
轴对称在几何证明及计算中的应用(1) ———角平分线中的轴对称.
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
3.1无理数2.
分形几何 计算机科学与技术系.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
平行四边形的面积.
24.4弧长和扇形面积 圆锥的侧面积和全面积.
第5课 美妙的万花筒世界 ——如何实现LOGO重复命令的嵌套.
找 因 数.
1.2轴对称的性质 八 年 级 数 学 备 课 组.
位似.
生活中的几何体.
H a S = a h.
§2 自由代数 定义19.7:设X是集合,G是一个T-代数,为X到G的函数,若对每个T-代数A和X到A的函数,都存在唯一的G到A的同态映射,使得=,则称G(更严格的说是(G,))是生成集X上的自由T-代数。X中的元素称为生成元。 A变, 变 变, 也变 对给定的 和A,是唯一的.
正方形的性质.
第三章 图形的平移与旋转.
§2.3.2 平面与平面垂直的判定.
9.3多项式乘多项式.
Presentation transcript:

分形几何 ——数学与艺术结合的明珠

海岸线长度问题 二十世纪七十年代,法国数学家曼德尔勃罗特在他的著作中讨论英国海岸线的长度。他发现,这个问题取决于测量所使用的尺度。采用公里做单位,一些几米和几十米的曲折会被忽略,如果采用米做单位,测得的长度会曾加,但厘米以下的量仍然无法反映,测量单位的缩小使测得的长度曾加,由于在自然尺度之间有许多个数量级,这种曾加不会停止,海岸线的长度会趋于无限长。也就是说,长度不是海岸线的定量特征。

数学的不规则图形 实际上,在曼德尔勃朗特的问题提出之前,数学家就曾经构造过多种不规则的几何图形,他们具有和海岸线相似的性质。

Cantor集 Cantor在1883年构造了如下一类集合:取一段欧式长度为l的直线段,将该线段三等分,去掉中间的一段,剩下两段。再将剩下的两段分别三等分,各去掉中间的一段,剩下四段。将这个操作进行下去,直至无穷,可得到一个离散的点集,点数趋于无穷多,而长度趋于零。经无限次操作所得到的离散点集称为Cantor集。

Koch雪花线 瑞典数学家科赫(H.von Koch)在1904年提出了一种曲线,它的生成方法是把一条直线段分成三段,将中间的一段用夹角为60度的两条等长折线来代替,形成一个生成元,然后再把每个直线段用生成元进行代换,经无穷次迭代后就呈现出一条有无穷多弯曲的Koch曲线。

Sierpinski集 首先,将一个等边三角形四等分,得到四个小等边三角形,去掉中间的一个,保留它的边。将剩下的三个小三角形再分别进行四等分,并分别去掉中间的一个,保留它的边。重复操作直至无穷,得到一个面积为零,线的欧式长度趋于无穷大的图形。这个图形被人们称为谢尔宾斯基缕垫。

Sierpinski地毯 其次,将一个正方形九等分,去掉中间的一个,保留四条边,剩下八个小正方形。将这九个小正方形再分别进行九等分,各自去掉中间的一个保留它们的边。重复操作直至无穷。

Sierpinski地毯

Sierpinski海绵 第三,对一个正六面体,将它的每条边进行三等分,即对正六面体进行27等分,去掉体心和面心处的7个小正六面体,剩下20个小正六面体,并保留它们的表面,重复操作直无穷,得到的图形。体积趋于零,而其表面的欧式面积趋于无穷大。

Sierpinski集的共同特点 它们都是经典几何无法描述的图形,是一种“只有皮没有肉”的几何集合。 它们都具有无穷多个自相似的内部结构,任何一个分割后的图形放大后都是原来图形的翻版。

Peano曲线

问题在哪里? 以上是一些经典几何意义下的“病态”图形,以Koch曲线为例,以一维来度量它,它的长度趋于无穷,而以二维来度量它,它的面积为零,那么,它究竟是几维图形?1维? 2维?1.????维吗? 经典的维度定义有问题吗?

经典几何的维度定义 在经典几何下,点被定义成0维的,点没有长度;直线被定义成1维,只有长度,没有面积,平面图形被定义成2维的,有面积,没有体积,立体图形是3维的,有体积。 经典几何讨论的维度都是整数,它们的数值与决定几何形状的变量个数及自由度是一致的,这是一个很自然的想法。

换一个角度看维度 根据相似性来看线段、正方形和立方体的维数。首先把线段、正方形和立方体的边两等分,这样,线段成为长度一半的两条线段,正方形变成边长为原来边长1/2的四个小正方形,而立方体而成为八个小立方体,边长为原来边长的1/2。原来的线段、正方形和立方体分别由2,4,8个把全体分成1/2的相似形组成。而2,4,8可改写成2的1,2,3次方,这里的1,2,3分别与其图形的经验维数相一致。

相似维度的定义 一般地,如果某图形是由把全体缩小为1/a的aD个相似图形构成的,那么此指数D就具有维度的意义。此维数被称为相似维数。 相似维数常用DS表示,按照定义,DS完全没有是整数的必要。如某图形是由全体缩小1/a的b个相似形组成,则 DS=(㏑b)/(㏑a)

我们可以以此计算上述几种图形的相似维度。 Koch曲线:(㏑4)/ (㏑3)=1.2618 Cantor集: (㏑2)/ (㏑3)=0.6309 Sierpinski集:缕垫: (㏑3)/ (㏑2)=1.5850 地毯: (㏑8)/ (㏑3)=1.8927 海绵: (㏑20)/ (㏑3)=2.7268

而Peano曲线的维度是:(㏑4)/ (㏑ 2)=2 Peano曲线能够填满整个正方形也就不足为奇了 从以上图形的生成方式来看,大体上有两种方式:第一种是从初始图形E0按一定原则往下“挖”,得到的新图形的维数小于E0 的欧式维数,常称为降维生成;第二种是在初始图形E0的基础上增加一些线或面,得到的图形E的维数大于E0的欧式维数,这种生成方式常称为升维生成。

相似维数的定义具有很大的局限性,因为只用对具有严格的自相似性的分形,才能使用这个维数,定义适用于包括随机图形在内的任意的维数是很必要的。 波恩大学数学家豪斯道夫1919年从测量的角度引进了Hausdorff维数。

分形的定义 定义1.如果一个集合在欧式空间中的Hausdorff维数DH恒大于其拓扑维数DT,则称该集合为分形集,简称分形。 由Mandelbrot在1982年提出,四年后,他又提出了一个更是实用的定义: 定义2.组成部分以某种方式与整体相似的形体叫分形。

分形理论的应用 生物学:肺(人肺的分形维数约为2.17;血管(血管直径分布的分形维数约为2.3),人脑(人脑表面的皱纹的分形维数约为2.73-2.79);蛋白质。 地球物理学:海岸线、河流的干流和支流分布、地震研究。 物理学和化学:超导;固体表面;高分子。

天文学,材料科学,计算机图形学,经济学,语言学和情报学

分形的自然观与世界观 递归性,宇宙的创生,生命的生成,思维的生成。 维数与空间,马赫多维原子理论,物理空间的变维性。 变维的中国文化根源。

分形几何的方法论意义

两种数学观