统 计 学 (第三版) 2008 作者 贾俊平 统计学.

Slides:



Advertisements
Similar presentations
随机变量及其概率分布 第二章 离散型随机变量及其分布律 正态分布 连续型随机变量及其分布律 随机变量函数的分布.
Advertisements

第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
练一练: 在数轴上画出表示下列各数的点, 并指出这些点相互间的关系: -6 , 6 , -3 , 3 , -1.5, 1.5.
第一节 数理统计的基本概念.
Excel在统计中的应用.
3.1 随机事件及其概率 3.2 随机变量及其概率分布 3.3 大数定律与中心极限定理
3.1.3 概率的基本性质.
Exam 2考试知识点思维导图.
第四章 概率、正态分布、常用统计分布.
Excel Functions and Probability Distribution
第三章 函数逼近 — 最佳平方逼近.
第三章 概率及概率分布 教学目的: (1)理解试验、事件、样本空间、概率定义 (2)学习描述和使用概率的运算法则
6.6 单侧置信限 1、问题的引入 2、基本概念 3、典型例题 4、小结.
第五章 抽样调查 第一节 抽样调查概述 第二节 抽样调查的数理基础 第三节 抽样误差与参数估计 第四节 抽样调查的组织方式
08-09冬季学期 概率论与数理统计 姜旭峰,胡玉磊.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
主要内容 § 3.1 多维随机变量及联合分布 联合分布函里数 联合分布律 联合概率密度 § 3.2 二维随机变量的边缘分布
本讲义可在网址 或 ftp://math.shekou.com 下载
不确定度的传递与合成 间接测量结果不确定度的评估
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
区间估计 Interval Estimation.
1.2 事件的频率与概率 一、事件的频率 二、概率的公理化体系 1.2 事件的频率与概率.
统计学期末复习
Introduction To Mean Shift
第6章 统计量及其抽样分布 统计量 关于分布的几个概念 由正态分布导出的几个重要分布 样本均值的分布与中心极限定理 样本比例的抽样分布
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
例1 :甲击中的环数; X :乙击中的环数; Y 平较高? 试问哪一个人的射击水 : 的射击水平由下表给出 甲、乙两人射击,他们
本次课讲授:第二章第十一节,第十二节,第三章第一节, 下次课讲第三章第二节,第三节,第四节; 下次上课时交作业P29—P30
统 计 学 (第三版) 2008 作者 贾俊平 统计学.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第十章 方差分析.
检验 Chi-Squared Test Goodness-of-fit Test 拟合优度检验 & Test of Row and Column Independenc 独立性检验 欧阳顺湘 北京师范大学珠海分校.
数据统计与分析 秦 猛 南京大学物理系 手机: 第十讲 数据统计与分析 秦 猛 南京大学物理系 办公室:唐仲英楼A 手机:
概 率 统 计 主讲教师 叶宏 山东大学数学院.
2.1.2 空间中直线与直线 之间的位置关系.
连续型随机变量及其概率密度 一、概率密度的概念与性质 二、常见连续型随机变量的分布 三、小结.
第七章 参数估计 7.3 参数的区间估计.
第八章 常用统计分布.
第一章 函数与极限.
习题 一、概率论 1.已知随机事件A,B,C满足 在下列三种情况下,计算 (1)A,B,C相互独立 (2)A,B独立,A,C互不相容
第一章.
抽样和抽样分布 基本计算 Sampling & Sampling distribution
概 率 统 计 主讲教师 叶宏 山东大学数学院.
应用概率统计 主讲:刘剑平.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
成绩是怎么算出来的? 16级第一学期半期考试成绩 班级 姓名 语文 数学 英语 政治 历史 地理 物理 化学 生物 总分 1 张三1 115
第4章 Excel电子表格制作软件 4.4 函数(一).
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
概 率 统 计 主讲教师 叶宏 山东大学数学院.
第4课时 绝对值.
学习任务三 偏导数 结合一元函数的导数学习二元函数的偏导数是非常有用的. 要求了解二元函数的偏导数的定义, 掌握二元函数偏导数的计算.
第四节 随机变量函数的概率分布 X 是分布已知的随机变量,g ( · ) 是一个已知 的连续函数,如何求随机变量 Y =g(X ) 的分布?
第四章 常用概率分布 韩国君 教授.
第一部分:概率 产生随机样本:对分布采样 均匀分布 其他分布 伪随机数 很多统计软件包中都有此工具 如在Matlab中:rand
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
§5.2 抽样分布   确定统计量的分布——抽样分布,是数理统计的基本问题之一.采用求随机向量的函数的分布的方法可得到抽样分布.由于样本容量一般不止2或 3(甚至还可能是随机的),故计算往往很复杂,有时还需要特殊技巧或特殊工具.   由于正态总体是最常见的总体,故本节介绍的几个抽样分布均对正态总体而言.
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
正弦、余弦函数的性质 华容一中 伍立华 2017年2月24日.
难点:连续变量函数分布与二维连续变量分布
第 6 章 统计量及其抽样分布 作者:中国人民大学统计学院 贾俊平 PowerPoint 统计学.
数理统计基本知识.
第十五讲 区间估计 本次课讲完区间估计并开始讲授假设检验部分 下次课结束假设检验,并进行全书复习 本次课程后完成作业的后两部分
第五章 数理统计的基本知识 §5.1 总体与样本.
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
第6章 数理统计基础 §6.1 数理统计的几个基本概念 §6.2 描述统计 §6.3 抽样分布.
Presentation transcript:

统 计 学 (第三版) 2008 作者 贾俊平 统计学

统计名言 数学定律不能百分之百确切地用在 现实生活里;能百分之百确切地用 数学定律描述的,就不是现实生活 ——Alber Einstein As a result of this class, you will be able to ... 2008年8月

4.1 度量事件发生的可能性 3.2 随机变量概率分布 3.3 由正态分布导出的几个重要分布 3.4 样本统计量的概率分布 第 4 章 概率分布 4.1 度量事件发生的可能性 3.2 随机变量概率分布 3.3 由正态分布导出的几个重要分布 3.4 样本统计量的概率分布

学习目标 度量事件发生的可能性—概率 离散型概率分布 连续型概率分布 由正态分布导出的几个重要分布 c2-分布, t-分布, F-分布 二项分布,泊松分布,超几何分布 连续型概率分布 正态分布 由正态分布导出的几个重要分布 c2-分布, t-分布, F-分布 样本统计量的概率分布 As a result of this class, you will be able to ... 2008年8月

中奖的可能性有多大? 很多想在彩票市场上赚大钱,这可以理解,但赢得大奖的人总是少数。山东的一打工者为了碰运气,半个小时花去了1000元钱,买了500张即开型福利彩票,结果也没撞上大奖。有人曾做过统计,最赚钱的彩票,中彩的概率最高是500万分之一,有的达到1000万分之一甚至更低 假定每张彩票面值是2元,大奖的奖金额是500万元,中将概率是500万分之一,你花掉1000万元购买500万张彩票,即使中了500万的大奖,你仍然亏损500万。况且,从概率的意义上看,即使你购买500万张彩票,也不能肯定就中大奖 法国人就有这样的俗语:“中彩的机会比空难还少。”对于多数人来说,彩票只是一种数字游戏,是社会筹集闲散资金的一种方式,而不是一种投资,更不是赌博。相信有了本章介绍的概率方面的知识,你就不会再跟彩票较劲 As a result of this class, you will be able to ... 2008年8月

第 4 章 概率分布 4.1 度量事件发生的可能性 概率是什么? 怎样获得概率? 怎样理解概率?

什么是概率? (probability) 概率是对事件发生的可能性大小的度量 一个介于0和1之间的一个值 事件A的概率记为P(A) 明天降水的概率是80%。这里的80%就是对降水这一事件发生的可能性大小的一种数值度量 你购买一只股票明天上涨的可能性是30%,这也是一个概率 一个介于0和1之间的一个值 事件A的概率记为P(A) As a result of this class, you will be able to ... 2008年8月

怎样获得概率? 重复试验获得概率 用类似的比例来逼近 主观概率 当试验的次数很多时,概率P(A)可以由所观察到的事件A发生次数(频数)的比例来逼近 在相同条件下,重复进行n次试验,事件A发生了m次,则事件A发生的概率可以写为 As a result of this class, you will be able to ... 用类似的比例来逼近 一家餐馆将生存5年的概率,可以用已经生存了5年的类似餐馆所占的比例作为所求概率一个近似值 主观概率 2008年8月

第 4 章 概率分布 4.2 随机变量的概率分布 4.2.1 随机变量及其概括性度量 4.2.2 离散型概率分布 4.2.3 连续型概率分布

4.2 随机变量的概率分布 4.2.1 随机变量及其概括性度量

什么是随机变量? (random variables) 事先不知道会出现什么结果 投掷两枚硬币出现正面的数量 一座写字楼,每平方米的出租价格 一个消费者对某一特定品牌饮料的偏好 一般用 X,Y,Z 来表示 根据取值情况的不同分为离散型随机变量和连续型随机变量 2008年8月

离散型随机变量 (discrete random variables) 随机变量 X 取有限个值或所有取值都可以逐个列举出来 x1 , x2,… 以确定的概率取这些不同的值 离散型随机变量的一些例子 试验 随机变量 可能的取值 抽查100个产品 一家餐馆营业一天 电脑公司一个月的销售 销售一辆汽车 取到次品的个数 顾客数 销售量 顾客性别 0,1,2, …,100 0,1,2, … 0,1, 2,… 男性为0,女性为1 2008年8月

连续型随机变量 (continuous random variables) 可以取一个或多个区间中任何值 所有可能取值不可以逐个列举出来,而是取数轴上某一区间内的任意点 连续型随机变量的一些例子 试验 随机变量 可能的取值 抽查一批电子元件 新建一座住宅楼 测量一个产品的长度 使用寿命(小时) 半年后完工的百分比 测量误差(cm) X  0 0 X 100 2008年8月

离散型随机变量的期望值 (expected value) 描述离散型随机变量取值的集中程度 离散型随机变量X的所有可能取值xi与其取相对应的概率 pi 乘积之和 记为 或E(X),计算公式为 2008年8月

离散型随机变量的方差 (variance) 随机变量X的每一个取值与期望值的离差平方和的数学期望,记为 2 或D(X) 描述离散型随机变量取值的分散程度 计算公式为 方差的平方根称为标准差,记为 或D(X) 2008年8月

离散型数学期望和方差 (例题分析) 【例】一家电脑配件供应商声称,他所提供的配件100个中拥有次品的个数及概率如下表。求该供应商次品数的数学期望和标准差 As a result of this class, you will be able to ... 次品数X = xi 1 2 3 概率P(X=xi)pi 0.75 0.12 0.08 0.05 2008年8月

连续型随机变量的期望和方差 连续型随机变量的期望值 方差 2008年8月

4.2 随机变量的概率分布 4.2.2 离散型概率分布

离散型随机变量的概率分布 X = xi x1 ,x2 ,… ,xn P(X =xi)=pi p1 ,p2 ,… ,pn 列出随机变量取这些值的概率 通常用下面的表格来表示 X = xi x1 ,x2 ,… ,xn P(X =xi)=pi p1 ,p2 ,… ,pn P(X =xi)=pi称为离散型随机变量的概率函数 pi0 ; 常用的有二项分布、泊松分布、超几何分布等 2008年8月

离散型随机变量的概率分布 (例题分析) 【例】一部电梯在一周内发生故障的次数X及相应的概率如下表 故障次数X = xi 1 2 3 离散型随机变量的概率分布 (例题分析) 【例】一部电梯在一周内发生故障的次数X及相应的概率如下表 故障次数X = xi 1 2 3 概率P(X=xi)pi 0.10 0.25 0.35  As a result of this class, you will be able to ... (1) 确定的值 (2) 求正好发生两次故障的概率 (3) 求故障次数多于一次的概率 (4) 最多发生一次故障的概率 2008年8月

离散型随机变量的概率分布 (例题分析) 解:(1) 由于0.10+0.25+0.35+ =1 所以, =0.30 离散型随机变量的概率分布 (例题分析) 解:(1) 由于0.10+0.25+0.35+ =1 所以, =0.30 (2) P(X=2)=0.35 (3) P(X 2)=0.10+0.25+0.35=0.70 (4) P(X1)=0.35+0.30=0.65 As a result of this class, you will be able to ... 2008年8月

二项试验 (Bernoulli试验) 二项分布建立在Bernoulli试验基础上 贝努里试验满足下列条件 一次试验只有两个可能结果,即“成功”和“失败” “成功”是指我们感兴趣的某种特征 一次试验“成功”的概率为p ,失败的概率为q =1- p,且概率p对每次试验都是相同的 试验是相互独立的,并可以重复进行n次 在n次试验中,“成功”的次数对应一个离散型随机变量X 2008年8月

二项分布 (Binomial distribution) 重复进行 n 次试验,出现“成功”的次数的概率分布称为二项分布,记为X~B(n,p) 设X为 n 次重复试验中出现成功的次数,X 取 x 的概率为 2008年8月

二项分布 (例题分析) 【例】已知一批产品的次品率为4%,从中任意有放回地抽 取5个。求5个产品中 (1) 没有次品的概率是多少? 二项分布 (例题分析) 【例】已知一批产品的次品率为4%,从中任意有放回地抽 取5个。求5个产品中 (1) 没有次品的概率是多少? (2) 恰好有1个次品的概率是多少? (3) 有3个以下次品的概率是多少? As a result of this class, you will be able to ... 2008年8月

二项分布 (用Excel计算概率)  用Excel计算二项分布的概率 第1步:在Excel表格界面,直接点击【fx】(插入函数)命令 第2步:在【选择类别】中点击【统计】,并在【选择函数】 中点击【BINOMDIST】,然后单击【确定】 第3步:在【Number_s】后填入试验成功次数(本例为1) 在【Trials】后填入总试验次数(本例为5) 在【Probability_s】后填入试验的成功概率(本例为 0.04) 在【Cumulative】后填入0(或FALSE),表示计算成 功次数恰好等于指定数值的概率(填入1或TRUE表示 计算成功次数小于或等于指定数值的累积概率值)  用Excel计算二项分布的概率 2008年8月

泊松分布 (Poisson distribution) 1837年法国数学家泊松(D.Poisson,1781—1840)首次提出 用于描述在一指定时间范围内或在一定的长度、面积、体积之内每一事件出现次数的分布 泊松分布的例子 一定时间段内,某航空公司接到的订票电话数 一定时间内,到车站等候公共汽车的人数 一定路段内,路面出现大损坏的次数 一定时间段内,放射性物质放射的粒子数 一匹布上发现的疵点个数 一定页数的书刊上出现的错别字个数 2008年8月

泊松分布 (概率分布函数) — 给定的时间间隔、长度、面 积、体积内“成功”的平均数 e = 2.71828 x —给定的时间间隔、长度、面 积、体积内“成功”的次数 2008年8月

泊松分布 (例题分析) 【例】假定某航空公司预订票处平均每小时接到42次订票电话,那么10分钟内恰好接到6次电话的概率是多少? 泊松分布 (例题分析) 【例】假定某航空公司预订票处平均每小时接到42次订票电话,那么10分钟内恰好接到6次电话的概率是多少? 解:设X=10分钟内航空公司预订票处接到的电话次数 As a result of this class, you will be able to ... 2008年8月

泊松分布 (用Excel计算概率)  用Excel计算泊松分布的概率 第3步:在【X】后填入事件出现的次数(本例为6) 第1步:在Excel表格界面,直接点击【fx】(插入函数)命令 第2步:在【选择类别】中点击【统计】,并在【选择函数】 中点击【POISSON 】,然后单击【确定】 第3步:在【X】后填入事件出现的次数(本例为6) 在【Means】后填入泊松分布的均值(本例为7) 在【Cumulative】后填入0(或FALSE),表示计算成 功次数恰好等于指定数值的概率(填入1或TRUE表示 计算成功次数小于或等于指定数值的累积概率值)  用Excel计算泊松分布的概率 2008年8月

超几何分布 (hypergeometric distribution) 采用不重复抽样,各次试验并不独立,成功的概率也互不相等 总体元素的数目N很小,或样本容量n相对于N来说较大时,样本中“成功”的次数则服从超几何概率分布 概率分布函数为 2008年8月

超几何分布 (例题分析) 【例】假定有10支股票,其中有3支购买后可以获利,另外7支购买后将会亏损。如果你打算从10支股票中选择4支购买,但你并不知道哪3支是获利的,哪7支是亏损的。求 (1)有3支能获利的股票都被你选中的概率有多大? (2)3支可获利的股票中有2支被你选中的概率有多大? As a result of this class, you will be able to ... 解:设N=10,M=3,n=4 2008年8月

超几何分布 (用Excel计算概率)  用Excel计算超几何分布的概率 第1步:在Excel表格界面,直接点击【fx】(插入函数)命令 第2步:在【选择类别】中点击【统计】,并在【选择函数】 中点击【 HYPGEOMDIST】,然后单击【确定】 第3步:在【Sample_s 】后填入样本中成功的次数x(本例为3) 在【Number_sample】后填入样本容量n(本例为4) 在【Population_s】后填入总体中成功的次数M(本例 为3) 在【Number_pop】后填入总体中的个体总数N (本例为10)  用Excel计算超几何分布的概率 2008年8月

4.2 随机变量的概率分布 4.2.3 连续型概率分布

连续型随机变量的概率分布 连续型随机变量可以取某一区间或整个实数轴上的任意一个值 它取任何一个特定的值的概率都等于0 不能列出每一个值及其相应的概率 通常研究它取某一区间值的概率 用概率密度函数的形式和分布函数的形式来描述 2008年8月

常用连续型概率分布 2008年8月 3

正态分布 (normal distribution) 由C.F.高斯(Carl Friedrich Gauss,1777— 1855)作为描述误差相对频数分布的模型而提出 描述连续型随机变量的最重要的分布 许多现象都可以由正态分布来描述 可用于近似离散型随机变量的分布 例如: 二项分布 经典统计推断的基础 x f (x) 2008年8月

概率密度函数 f(x) = 随机变量 X 的频数  = 正态随机变量X的均值  = 正态随机变量X的方差  = 3.1415926; e = 2.71828 x = 随机变量的取值 (- < x < +) 2008年8月

正态分布函数的性质 图形是关于x=对称钟形曲线,且峰值在x= 处 均值和标准差一旦确定,分布的具体形式也惟一确 定,不同参数正态分布构成一个完整的“正态分布族 ” 均值可取实数轴上的任意数值,决定正态曲线的具 体位置;标准差决定曲线的“陡峭”或“扁平”程度 。越大,正态曲线扁平;越小,正态曲线越高陡峭 当X的取值向横轴左右两个方向无限延伸时,曲线的 两个尾端也无限渐近横轴,理论上永远不会与之相交 正态随机变量在特定区间上的取值概率由正态曲线下 的面积给出,而且其曲线下的总面积等于1 2008年8月

 和 对正态曲线的影响 x f(x) C A B  =1/2  1  2 =1 2008年8月

标准正态分布 (standardize normal distribution) 随机变量具有均值为0,标准差为1的正态分布 任何一个一般的正态分布,可通过下面的线性变换转化为标准正态分布 标准正态分布的概率密度函数 标准正态分布的分布函数 2008年8月

正态分布 (用Excel计算正态分布的概率) 第1步:在Excel表格界面中,点击“fx ”(插入函数)命令 第2步:在【选择类别】中点击【统计】,并在【选择函数】 中点击【NORMDIST】,然后单击【确定】 第3步:在【X】后输入正态分布函数计算的区间点(即x值) 在【Mean】后输入正态分布的均值 在【Standard_dev】后输入正态分布的标准差 在【Cumulative】后输入1(或TRUE)表示计算事件出 现次数小于或等于指定数值的累概率 单击【确定】 2008年8月

正态分布 (计算标准正态分布的概率和反函数值) 正态分布 (计算标准正态分布的概率和反函数值) 第1步:在Excel表格界面中,点击“fx ”(插入函数)命令 第2步:在【选择类别】中点击【统计】,并在【选择函数】中点击 【NORMSDIST】,单击【确定】 第3步:在【Z】后输入Z的值。单击【确定】 【NORMSINV】,然后单击【确定】 第3步:在【Probability】后输入给定的概率值。单击【确定】 计算概率 计算z值 2008年8月

正态分布 (例题分析)  用Excel正态分布的计算概率 【例】计算以下概率 (1) X~N(50,102),求 和 (2) Z~N(0,1),求 和 (3)正态分布概率为 0.05 时,求标准正态累积分布函数 的反函数值 z As a result of this class, you will be able to ...  用Excel正态分布的计算概率 2008年8月

数据正态性的评估 对数据画出频数分布的直方图或茎叶图 绘制正态概率图。有时也称为分位数—分位数图或称Q-Q图或称为P-P图 若数据近似服从正态分布,则图形的形状与上面给出的正态曲线应该相似 绘制正态概率图。有时也称为分位数—分位数图或称Q-Q图或称为P-P图 用于考察观测数据是否符合某一理论分布,如正态分布、指数分布、t分布等等 P-P图是根据观测数据的累积概率与理论分布(如正态分布)的累积概率的符合程度绘制的 Q-Q图则是根据观测值的实际分位数与理论分布(如正态分布)的分位数绘制的 使用非参数检验中的Kolmogorov-Smirnov检验(K-S检验) 2008年8月

正态概率图的绘制 (normal probability plots)  正态概率图可以在概率纸上绘制,也可以在普通纸上绘制。在普通纸上绘制正态概率图的步骤 第1步:将样本观察值从小到大排列 第2步:求出样本观察值的标准正态分数zi 。标准正 态分数满足 第3步:将zi作为纵轴,xi作为横轴,绘制图形,即为 标准正态概率图 2008年8月

正态概率图的绘制 (例题分析) 【例】在一家保险公司中随机抽取10名销售人员,他们的年销售(单位:万元)分别为176,191,214,220,205,192,201,190,183,185。绘制正态概率图,判断销售额数据是否服从正态分布 2008年8月

用SPSS绘制正态概率图 第1步:选择【Graphs】下拉菜单,并选择【P-P】 或 【Q-Q】选项进入主对话框 第2步:在主对话框中将变量选入【Variables】 ,点击【OK】  用SPSS绘制正态概率图 2008年8月

正态概率图的绘制 (例题分析) P-P图 Q-Q图 2008年8月

正态概率图的分析 (normal probability plots) 实际应用中,只有样本数据较多时正态概率图的效果才比较好。当然也可以用于小样本,但此时可能会出现与正态性有较大偏差的情况 在分析正态概率图时,最好不要用严格的标准去衡量数据点是否在一条直线上,只要近似在一条直线上即可 对于样本点中数值最大或最小的点也可以不用太关注,除非这些点偏离直线特别远,因为这些点通常会与直线有偏离。如果某个点偏离直线特别远,而其他点又基本上在直线上时,这个点可能是离群点,可不必考虑 2008年8月

第 4 章 概率分布 4.3 由正态分布导出的几个重要分布 4.3.1 2 分布 4.3.2 t 分布 4.3.3 F 分布

4.3 由正态分布导出的几个重要分布 4.3.1 2 分布

c2-分布 (2-distribution) 由阿贝(Abbe) 于1863年首先给出,后来由海尔墨特 (Hermert)和卡·皮尔逊(K·Pearson) 分别于1875年和 1900年推导出来 设 ,则 令 ,则 y 服从自由度为1的2分布,即 对于n个正态随机变量y1 ,y2 ,yn,则随机变量 称为具有n个自由度的2分布,记为 2008年8月

c2-分布 (性质和特点) 分布的变量值始终为正 分布的形状取决于其自由度n的大小,通常为不 对称的正偏分布,但随着自由度的增大逐渐趋 于对称 期望为:E(2)=n,方差为:D(2)=2n(n为自由 度) 可加性:若U和V为两个独立的2分布随机变量 ,U~2(n1),V~2(n2),则U+V这一随机变量服 从自由度为n1+n2的2分布 2008年8月

不同自由度的c2-分布 c 2 n=1 n=4 n=10 n=20 2008年8月 The sampling distribution is a function of the sample sizes upon which the sample variances are based. Hint: Recall the formula for variance! s2 = S(x -`x)2/(n-1) 2008年8月 65

c2-分布 (用Excel计算c2分布的概率) 利用Excel提供的【CHIDIST】统计函数,计算c2分布右单尾的概率值 语法:CHIDIST(x,degrees_freedom) ,其中df为自由度,x,是随机变量的取值 利用【CHIINV】函数则可以计算给定右尾概率和自由度时相应的反函数值 语法:CHIINV(probability,degrees_freedom) As a result of this class, you will be able to ...  用Excel计算c2 分布的概率 2008年8月

4.3 由正态分布导出的几个重要分布 4.3.2 t 分布

t-分布 (t-distribution) 提出者是William Gosset,也被称为学生分布(student’s t) t 分布是类似正态分布的一种对称分布,通常要比正态分布平坦和分散。一个特定的分布依赖于称之为自由度的参数。随着自由度的增大,分布也逐渐趋于正态分布 As a result of this class, you will be able to ... x t 分布与标准正态分布的比较 t 分布 标准正态分布 t 不同自由度的t分布 t (df = 13) t (df = 5) z 2008年8月

t-分布 (用Excel计算t分布的概率和临界值) 利用Excel中的【TDIST】统计函数,可以计算给定值和自由度时分布的概率值 语法:TDIST(x,degrees_freedom,tails) 利用【TINV】函数则可以计算给定概率和自由度时的相应 语法:TINV(probability,degrees_freedom) As a result of this class, you will be able to ...  用Excel计算t分布的临界值 2008年8月

4.3 由正态分布导出的几个重要分布 4.3.3 F 分布

F-分布 (F distribution) 为纪念统计学家费希尔(R.A.Fisher) 以其姓氏的第 一个字母来命名则 设若U为服从自由度为n1的2分布,即U~2(n1),V 为服从自由度为n2的2分布,即V~2(n2),且U和V相 互独立,则 称F为服从自由度n1和n2的F分布,记为 2008年8月

不同自由度的F分布 F (1,10) (5,10) (10,10) As a result of this class, you will be able to ... 2008年8月

F-分布 (用Excel计算F分布的概率和临街值) 利用Excel提供的【FDIST】统计函数,计算分布右单尾的概率值 语法:FDIST(x,degrees_freedom1,degrees_freedom2) 利用【FINV】函数则可以计算给定单尾概率和自由度时的相应 语法: FINV(probability,degrees_freedom1,degrees_freedom2) As a result of this class, you will be able to ...  用Excel计算F分布的概率 2008年8月

第 4 章 概率分布 4.4 样本统计量的概率分布 4.4.1 统计量及其分布 4.4.2 样本均值的分布 4.4.3 其他统计量的分布 第 4 章 概率分布 4.4 样本统计量的概率分布 4.4.1 统计量及其分布 4.4.2 样本均值的分布 4.4.3 其他统计量的分布 4.4.4 统计量的标准误差

4.4 样本统计量的概率分布 4.4.1 统计量及其分布

参数和统计量 参数(parameter) 统计量(statistic) 描述总体特征的概括性数字度量,是研究者想要了解的总体的某种特征值 一个总体的参数:总体均值()、标准差()、总体比例();两个总体参数:(1 -2)、(1-2)、(1/2) 总体参数通常用希腊字母表示 统计量(statistic) 用来描述样本特征的概括性数字度量,它是根据样本数据计算出来的一些量,是样本的函数 一个总体参数推断时的统计量:样本均值(x)、样本标准差(s)、样本比例(p)等两个总体参数推断时的统计量: (x1-x2)、(p1-p2)、(s1/s2) 样本统计量通常用小写英文字母来表示 :1, 1, 3 2008年8月

抽样分布 (sampling distribution) 样本统计量的概率分布,是一种理论分布 在重复选取容量为n的样本时,由该统计量的所有 可能取值形成的相对频数分布 随机变量是 样本统计量 样本均值, 样本比例,样本方差等 结果来自容量相同的所有可能样本 提供了样本统计量长远而稳定的信息,是进行 推断的理论基础,也是抽样推断科学性的重要 依据 2008年8月

4.4 样本统计量的概率分布 4.4.2 样本均值的分布

样本均值的分布 在重复选取容量为n的样本时,由样本均 值的所有可能取值形成的相对频数分布 一种理论概率分布 推断总体均值的理论基础 2008年8月

样本均值的分布 (例题分析) 【例】设一个总体,含有4个元素(个体) ,即总体单位数N=4。4 个个体分别为x1=1,x2=2,x3=3,x4=4 。总体的均值、方差及分布如下 均值和方差 总体分布 1 4 2 3 .1 .2 .3 2008年8月

样本均值的分布 (例题分析)  现从总体中抽取n=2的简单随机样本,在重复抽样条件下,共有42=16个样本。所有样本的结果为 3,4 样本均值的分布 (例题分析)  现从总体中抽取n=2的简单随机样本,在重复抽样条件下,共有42=16个样本。所有样本的结果为 3,4 3,3 3,2 3,1 3 2,4 2,3 2,2 2,1 2 4,4 4,3 4,2 4,1 4 1,4 1,3 1 1,2 1,1 第二个观察值 第一个 观察值 所有可能的n = 2 的样本(共16个) 2008年8月

样本均值的分布 (例题分析)  计算出各样本的均值,如下表。并给出样本均值的抽样分布 3.5 3.0 2.5 2.0 3 1.5 2 样本均值的分布 (例题分析)  计算出各样本的均值,如下表。并给出样本均值的抽样分布 3.5 3.0 2.5 2.0 3 1.5 2 4.0 4 1 1.0 第二个观察值 第一个 观察值 16个样本的均值(x) x 样本均值的抽样分布 1.0 0.1 0.2 0.3 P ( x ) 1.5 3.0 4.0 3.5 2.0 2.5 2008年8月

样本均值的分布与总体分布的比较 (例题分析) 样本均值的分布与总体分布的比较 (例题分析) 总体分布 样本均值分布  = 2.5 σ2 =1.25 2008年8月

样本均值的分布 与中心极限定理 当总体服从正态分布N(μ,σ2)时,来自该总体的所有容量为n的样本的均值x也服从正态分布,x 的期望值为μ,方差为σ2/n。即x~N(μ,σ2/n)  = 50  =10 X 总体分布 n = 4 抽样分布 x n =16 2008年8月

中心极限定理 (central limit theorem) 从均值为,方差为 2的一个任意总体中抽取容量为n的样本,当n充分大时,样本均值的抽样分布近似服从均值为μ、方差为σ2/n的正态分布 当样本容量足够大时(n  30) ,样本均值的抽样分布逐渐趋于正态分布 一个任意分布的总体 x 2008年8月

中心极限定理 (central limit theorem) x 的分布趋于正态分布的过程 2008年8月

抽样分布与总体分布的关系 总体分布 正态分布 非正态分布 样本均值 正态分布 样本均值 正态分布 样本均值 非正态分布 大样本 小样本 2008年8月

样本均值的分布 (数学期望与方差) 样本均值的分布 样本均值的期望值和方差  2008年8月

4.4 样本统计量的概率分布 4.4.3 其他统计量的分布

样本比例的分布 (proportion) 总体(或样本)中具有某种属性的单位与全部单位 总数之比 总体比例可表示为 样本比例可表示为 不同性别的人与全部人数之比 合格品(或不合格品) 与全部产品总数之比 总体比例可表示为 样本比例可表示为 2008年8月

样本比例的分布 在重复选取容量为n的样本时,由样本比 例的所有可能取值形成的相对频数分布 一种理论概率分布 当样本容量很大时,样本比例的抽样分布 可用正态分布近似,即 2008年8月

样本方差的分布 在重复选取容量为n的样本时,由样本方差的所有可能取值形成的相对频数分布 对于来自正态总体的简单随机样本,则比值 As a result of this class, you will be able to ... 2008年8月

样本方差的分布 在重复选取容量为n的样本时,由样本方差的所有可能取值形成的相对频数分布 对于来自正态总体的简单随机样本,则比值 As a result of this class, you will be able to ... 2008年8月

4.4 样本统计量的概率分布 4.4.4 统计量的标准误差

统计量的标准误差 (standard error) 样本统计量的抽样分布的标准差,称为统计量的标准误,也称为标准误差 衡量统计量的离散程度,测度了用样本统计量估计总体参数的精确程度 样本均值和样本比例的标准误差分别为 2008年8月

估计的标准误差 (standard error of estimation) 当计算标准误时涉及的总体参数未知时,用样本统计量代替计算的标准误,称为估计的标准误 以样本均值为例:当总体标准差未知时,可用样本标准差s代替,则在重复抽样条件下,样本均值的估计标准误为 2008年8月

Excel中的统计函数 BINOMDIST—计算二项分布的概率 POISSON—计算泊松分布的概率 HYPGEOMDIST—计算超几何分布的概率 NORMDIST—计算正态分布的概率 NORMINV—计算正态分布的区间点(临界值) NORMSDIST— 计算标准正态分布的概率 NORMSINV—计算标准正态分布的区间点(分位数) CHIDIST—计算c2分布的右尾概率 CHIINV—计算给定c2分布的右尾概率的临界值 FDIST —计算F分布的右尾概率 FINV —计算给定F右尾概率的临界 TDIST—计算给定t值的分布概率 TINV—计算给定概率的t值 2008年8月

本章小结 度量事件发生的可能性—概率 离散型概率分布 连续型概率分布 由正态分布导出的几个重要分布 c2-分布, t-分布, F-分布 二项分布,泊松分布,超几何分布 连续型概率分布 正态分布 由正态分布导出的几个重要分布 c2-分布, t-分布, F-分布 样本统计量的概率分布 2008年8月

结 束 THANKS