資料分析:相關和迴歸 第十八章 「行銷研究人員必須持續檢視消費者認知和最終 購買決策之間的關係,因此,相關和迴歸技術為行

Slides:



Advertisements
Similar presentations
©2009 陳欣得 統計學 —e1 微積分基本概念 1 第 e 章 微積分基本概念 e.1 基本函數的性質 02 e.2 微分基本公式 08 e.3 積分基本公式 18 e.4 多重微分與多重積分 25 e.5 微積分在統計上的應用 32.
Advertisements

變數與函數 大綱 : 對應關係 函數 函數值 顧震宇 台灣數位學習科技股份有限公司. 對應關係 蛋餅飯糰土司漢堡咖啡奶茶 25 元 30 元 25 元 35 元 25 元 20 元 顧震宇 老師 台灣數位學習科技股份有限公司 變數與函數 下表是早餐店價格表的一部分: 蛋餅 飯糰 土司 漢堡 咖啡 奶茶.
第 6 章 複迴歸之一.
單元九:單因子變異數分析.
實驗規劃--實驗因子設定, 效標選定與受測者選定
樞紐分析與資料庫 蕭世斌 Nov 20, 2010.
Chapter 2 簡單迴歸模型.
圓的一般式 內容說明: 由圓的標準式展出圓的一般式.
中二數學 第五章 : 二元一次方程 二元一次方程的圖像.
期望值 變異數 共變異數與相關係數 變異數與共變異數之性質 柴比雪夫不等氏 動差與動差生成函數
圓的一般式 內容說明: 由圓的標準式展出圓的一般式.
第16章 複迴歸.
數 據 分 析 林煜家 魏韶寬 陳思羽 邱振源.
Keller: Stats for Mgmt & Econ, 7th Ed 簡單線性迴歸和相關分析
17 類別資料的分析  學習目的.
第 14 章 Logistic迴歸.
第十四章 複相關與複迴歸分析 陳順宇 教授 成功大學統計系.
第四章 數列與級數 4-1 等差數列與級數 4-2 等比數列與級數 4-3 無窮等比級數 下一頁 總目錄.
統計數量分析幾個重要的觀念 陳順宇 教授.
5.1 自然對數函數:微分 5.2 自然對數函數:積分 5.3 反函數 5.4 指數函數:微分與積分 5.5 一般底數的指數函數和應用 5.6 反三角函數:微分 5.7 反三角函數:積分 5.8 雙曲函數.
本章重點: 1.迴歸分析及相關分析的意義及方法 2.利用最小平方法來估計迴歸方程式 3.相關分析與迴歸分析的關係
迴歸分析 主講人:童超塵 實驗室網址 永久: 實驗室網址 永久: 目前:
Project 2 JMVC code tracing
Simple Linear Regression -2
Regression for binary outcomes
Simple Linear Regression -4
REGRESSION FOR ORDINAL OUTCOMES 「順序尺度依變項」的迴歸模型
第14章 迴歸分析與複迴歸分析  本章的學習主題  1.使用迴歸分析的時機 2.最小平方法在迴歸分析上的意義 3.迴歸分析的假設
4B冊 認識公倍數和最小公倍數 公倍數和最小公倍數的關係.
課程九 迴歸與相關2.
邏輯迴歸 Logistic Regression
Regression and Correlation
第 14 章 簡單迴歸.
第 7 章 複迴歸之二.
數位化學習滿意度關鍵影響因素之研究 國立高雄師範大學 資訊教育研究所.
Discriminant Analysis
單一分配 Uniform distribution
相關與迴歸 Correlation and Regression
第 14 章 簡單線性迴歸.
複迴歸分析-2 Multiple Regression.
第十一章 相關研究法.
Chapter 3 複迴歸分析: 估計.
第十四章 單因子變異數分析 14.1 前言 14.2 單因子變異數分析理論 14.3 功能視窗 14.4 範例
統計學 指導老師: 郭燿禎 Date: 2/14/12.
第 五 章 複迴歸分析.
第一章 直角坐標系 1-3 函數圖形.
估計與假設檢定.
第一章.
Definition of Trace Function
第 一 章 多元迴歸分析.
有關於股票報酬及匯率變化對台灣醫療產業市場收益的分析
信度分析 (11/7~11/13) 1.何謂『信度』 2.信度分析步驟.
CH1 我的第一個App與變數宣告.
第 15 章 複迴歸 © 滄海書局.
第五章 估計與信賴區間 5.1 估計概論 估計量的分配 信賴度、信賴區間與最大容忍誤差16
圓的定義 在平面上,與一定點等距的所有點所形成的圖形稱為圓。定點稱為圓心,圓心至圓上任意一點的距離稱為半徑,「圓」指的是曲線部分的圖形,故圓心並不在圓上.
授課內容: 時間序列與橫斷面資料的共用 政治大學行政管理碩士學程共同必修課 課程名稱:社會科學研究方法(量化分析) 授課老師:黃智聰
政治大學東亞所選修--計量分析與中國大陸研究黃智聰
上課大綱 迴歸係數的區間估計與假設檢定 統計顯著性與經濟顯著性 迴歸模型中的點預測與區間預測 配適度分析(變異數分析)
第一章.
Chapter 4 迴歸分析. Chapter 4 迴歸分析 迴歸分析原理 迴歸分析的目的在於找出一條最能夠代表所有觀測資料(樣本點)的函數(迴歸估計式),用這個函數代表應變數和自變數之間的關係 多變量分析—管理上的應用.
第一章 直 線 ‧1-3 二元一次方程式的圖形.
第 四 章 迴歸分析應注意之事項.
楊志強 博士 國立台北教育大學系 教育統計學 楊志強 博士 國立台北教育大學系
第十四章名義資料的數字 描述:關連測量 © Copyright 版權所有:學富文化事業有限公司。本光碟內容僅提供教師於教學上使用,非經本公司許可,禁止複製 (給學生)。感謝老師的配合。
第一章 直角坐標系 1-3 函數及其圖形.
政治大學財政所與東亞所選修--應用計量分析--中國財政研究 黃智聰
單元三:敘述統計 內容: * 統計量的計算 * 直方圖的繪製.
17.1 相關係數 判定係數:迴歸平方和除以總平方和 相關係數 判定係數:迴歸平方和除以總平方和.
第 七 章 共線性 與 偏相關.
Presentation transcript:

資料分析:相關和迴歸 第十八章 「行銷研究人員必須持續檢視消費者認知和最終 購買決策之間的關係,因此,相關和迴歸技術為行 銷研究中最常使用的分析工具。」 Jamie Baker-Prewitt, Ph.D., Vice President, Marketing & Decision Support Sciences, Burke, Inc., Cincinnati, OH

章前提問 1. 何謂積差相關?它如何成為迴歸分析的基礎? 2. 二元迴歸分析的性質和方法為何?如何描述一般模型? 3. 如何解釋二元迴歸中的參數估計、標準化迴歸係數、顯著性檢定、預測正確性? 4. 多元迴歸與二元迴歸有何差異? 5. 偏迴歸係數的意義為何?

圖18.1 相關及迴歸與先前章節、行銷研究過程的關係

圖18.2 相關和迴歸:概觀

積差相關 由 r 表示,用來表示兩個連續變數X 和 Y 關係的強度和方向 也可用來判斷 X 和 Y 之間是否存有線性或直線關係 又稱為皮爾森相關係數、簡單相關、二元相關或相關係數

將分子和分母共同除以(n-1),得到: X 和 Y 代表樣本平均數,Sx和Sy為標準差,COVxy為X 和 Y 之間的共變,測量 X 和 Y 相關的程度,共變可以是正或負

r 值會介於-1.0至+1.0之間 無論兩個變數的測量單位為何,其相關係數都是相同的

範例: - 假設研究人員想要以受訪者擁有跑車的年數(期間)來敘述其對跑車的態度,並以11點尺度來測量(1=不喜歡跑車,11=非常喜歡跑車),跑車的擁有期間則是以受訪者的實際擁有跑車年數來測量。前測有12位受訪者,所取得的資料如表18.1所示

圖18.1 對於跑車的態度

態度和期間的相關係數計算如下:

因此

表18.2 積差相關的計算

圖18.3 對跑車的態度和擁有期間的對應圖

因為 r 代表一個變數變動的程度如何與另一變數變動的程度有關,因此也可表示成總變異的解構

r2測量的是一個變數的變動中,有多少比率可由另一個變數所解釋 當 r=0僅代表X 和 Y 之間不存在線性相關,但並不代表 X 和 Y 無關,他們之間可能存有非線性的關係,無法由 r來表示

圖18.4 r=0的非線性關係

當計算的是母體而非樣本時,積差相關由 ρ表示,係數 r 為ρ的估計值 t 統計量為

由 t 分配表格(附錄統計表4)得知,雙尾檢定且α=0.05的 t 臨界值為2.228,因此虛無假設(X 和 Y 間沒有關係)被拒絕 具有自由度n-2的 t 分配 由 t 分配表格(附錄統計表4)得知,雙尾檢定且α=0.05的 t 臨界值為2.228,因此虛無假設(X 和 Y 間沒有關係)被拒絕 = 8.414

迴歸分析 定義: 用於以下情況: - 一種統計方法,用以分析一個連續型因變數和一個或多個自變數間的關係 - 1. 判斷自變數是否可以解釋因變數的顯著變動:是否存有 關聯 - 2. 判斷有多少因變數的變動可以由自變數來解釋:關聯的 強度 - 3. 判斷關聯的結構或形式:關於自變數和因變數的數學式 - 4. 預測因變數的數值 - 5. 當評估一特定變數或一套變數的效果時,需控制其他的 自變數

二元迴歸 二元迴歸 二元迴歸模型 - 為一種導出單一連續型因變數和單一連續型自變數之間數學關係方程式的方法 - 用以解釋迴歸分析(一自變數迴歸於單一因變數)的方程式

圖18.5 進行二元迴歸分析

散布圖 散布圖 最小平方法 平方誤差加總 - 由兩變數觀察數值組成的座標點所構成 - 藉由最小化所有點和該直線的垂直距離,找出最適合此散 布圖的直線 平方誤差加總 - 真實資料點與迴歸線預測點之垂直距離平方的加總

圖18.6 二元迴歸

二元迴歸模型 在二元迴歸模型中,直線的一般形式為: 假定誤差項是獨立且常態分配,具有平均值為0、常數變異的性質,則基本的迴歸式變為: Y = β0+β1+ X Y =因變數或準則變數  β0=直線的截距  β1=直線的斜率 X =自變數或預測變數 假定誤差項是獨立且常態分配,具有平均值為0、常數變異的性質,則基本的迴歸式變為: ei為與第i筆觀察數值相關的誤差項

參數估計 在大多數情況,β0和β1都是未知,需要由樣本觀察數值以下列方程式加以估計: i為 Yi 的估計或預測值,a、b為β0 、 β1的估計值 i = a + b xi

斜率 b 截距 a

使用表18.1的資料,態度(Y)對期間(X)的迴歸參數計算如下:

從之前的計算,可回想起簡易相關為: 給定n= 12,b可以計算如下:

估計的方程式為: 態度( )=1.0793+0.5897(擁有跑車期間)

表18.3 二元迴歸

標準化迴歸係數 標準化是一個將原始資料轉變為新變數的過程,具有平均值0、變異數為1的特性 當資料標準化後,截距假定為0 貝塔係數為標準化的迴歸係數 標準化和非標準化迴歸係數間存有簡易的關係:

顯著性檢定 X 和 Y 線性關係的統計顯著性可藉由以下假設來檢定: 使用自由度n-2的 t 統計量: SEb代表 b 的標準差,稱為標準誤

關聯的強度和顯著性 判定係數 Y 的總變動SSy可以解構為迴歸線所解釋的變動SSreg和殘差變動SSerror或SSres SSy = SSreg + SSres

關聯的強度計算如下: 以擁有跑車期間對跑車態度的影響為例,示範r2的計算

態度( )=1.0793+0.5897(擁有跑車期間) 使用表18.1的第一筆觀察數值來計算: 預測值( )可以使用以下的迴歸方程式計算: 態度( )=1.0793+0.5897(擁有跑車期間) 使用表18.1的第一筆觀察數值來計算: ( )=1.0793+0.5897×10=6.9763 使用以下的觀察數值,依序算出的預測值為 8.1557、8.1557、3.4381、8.1557、4.6175、 5.9769、2.2587、11.6939、6.3866、11.1042、 2.2587

因此,

因為SSy=SSreg+SSres,所以, X、Y 線性關係顯著性的檢定與判定係數顯著性的 檢定恆等時,判定係數顯著性的假設為:

其具有 F 分配,自由度為1和n-2。F 檢定是t檢定 的概化形式。如果隨機變數為具有自由度 n 的 t 分 配,則 t2為 F 分配,具有自由度1和n,因此, 用 F 檢定來測試判定係數的顯著性,會與以下假 設的檢定恆等: 或

具有自由度1和10。所算出的 F 統計量超過臨界 值4.96,因此,在α=0.05下,關係顯著,證實 t檢定的結果。

圖18.7 二元迴歸總變動的解釋

預測正確性 估計的標準誤 - 預測值 的真實 Y 值標準差 - 估計的標準誤愈大,迴歸的配適愈差

殘差檢視 殘差 - 觀察數值Yi與迴歸方程式的預測值 之間的差距 殘差散布圖 - 以殘差為一軸,以預測值 、時間或預測變數為另一軸

多元迴歸 多元迴歸 多元迴歸模型 - 一種統計技術,可發展出二或多個自變數和一區間尺度因變數間的數學關係 - 用以解釋多元迴歸分析結果的方程式

一般式: 由以下方程式估計: a代表截距,b為偏迴歸係數

偏迴歸係數 偏迴歸係數b1 - 代表當X2維持常數或加以控制時,若X1改變一單位,則 Y 會產生的預期變動 b2 - 代表當X1維持常數時,X2變動一單位時,Y 的預期改變 X1和X2對 Y 的結合效果為兩者相加而成的,亦即當X1和X2各變動一單位時,Y 的預期改變為(b1+b2)

延伸至 k 個變數時,亦是同套模式。偏迴歸係數b1代表當X2至Xk維持常數時,若X1變動一單位,則 Y 會產生的預期改變。當X2至Xk的效果可從X1中移除時,亦可解釋為 Y 對 X1殘差迴歸的二元迴歸係數 b

標準化和非標準化係數間的關係和先前一樣: 估計迴歸式為: 或 態度=0.3373+0.4811(期間)+0.2887(重要性)

表18.4 多元迴歸

關聯的強度 多元判定係數 - 在多元迴歸中,測量關聯的強度 - 可視為 Y 和 間的簡易相關係數 r

特徵: - R2不能小於任何自變數和因變數間二元相關係數的平方 - 當自變數間的關聯性低時,R2會比較大

調整後R2: - 調整過自變數數目和樣本數之後的R2值

顯著性檢定 測試整個迴歸方程式的顯著性

測試特定偏迴歸係數的顯著性 - 判斷特定係數(bi )是否異於0