遗传性疾病的分子诊断 ——诊断策略和工具 上海第二医科大学附属瑞金医院 樊绮诗.

Slides:



Advertisements
Similar presentations
第十八章 其他微生物 一、教学目的 了解:支原体、立克次体、衣原体、螺旋体、真 菌的种类、生物学性状、致病性、实验诊断 与防治原则。 二、教学方法 讲授、提问、讨论、教学互动 三、教学手段 多媒体教学.
Advertisements

化疗知识讲座 台州博爱肿瘤医院 陈国卿. 一、化疗药物的抗癌机制 1 、抑制细胞增殖和肿瘤的生长是其主要作 用机理。 2 、对于新陈代谢旺盛的正常组织同样具有 毒性,如骨髓细胞,粘膜细胞。 3 、理想的药物 — 最大程度的抑制肿瘤细胞, 最小程度的影响正常细胞。 4 、基因药物是发展方向。
病历书写 中山医院呼吸科 张 新. 定 义 病历是临床医生根据问诊、体格检查、实验 室和其他检查获得的资料经过归纳、分析、整理, 按照规定的格式而写成的;是关于病人发病情况, 病情发展变化,转归和诊疗情况的系统记录。 病历是临床医生根据问诊、体格检查、实验 室和其他检查获得的资料经过归纳、分析、整理,
第十二章 病历书写与要求 病历病历 医务人员在医疗中形成的文字、符号、图表、 影像、切片等资料的总和。 病历书写 通过诊法、诊断、治疗、护理等医疗活动获得有关资 料,进行归纳、分析、整理形成医疗活动记录行为。 病历意义 A 诊疗等的源文件; B 复 / 转 / 会诊,解决医疗纠纷、判定法律责任、医疗保险等的资料和依据;
生物化学 Biochemistry 临床生物化学教研室 陈正炎教授. 绪 论 ( Introduction ) 生物化学( biochemistry ) 是研究生物体 内化学分子及其化学反应,从分子水平探讨 生命现象本质的一门科学。 一、什么是生物化学 ? 生物化学 --- 生命的化学.
Chapter 16 The Molecular Basis of Inheritance. 探索遺傳物質 DNA  孟德爾 (Meselson) 發現遺傳因子。 1. 基因的不同等位基因解釋了諸多的遺傳性狀。 2. 對每一種性狀而言,一種生物體遺傳有兩個等位基因, 每一個等位基因得自於一方親代.
Diagnosis of Genetic Disease 本章节重点 本章节重点  遗传病特有的诊断方法? 及其应用范围?  染色体检查适应症  基因诊断  产前诊断.
选修3 现代生物技术专题第三节 蛋白质工程.
第二節 演 化 的 證 據.
测序知识概述.
DNA测序技术 DNA Sequencing
神创造万物及人类.
核酸序列分析与DNA计算 朱德裕 2013年11月8日.
专题1 基因工程 考点1:基因工程原理及特点 外源基因在受体细胞中能够表达. 原因: (1)不同生物间DNA分子的结构基本相同; (2)不同生物进行基因表达时都遵循“中心法则”; (3)所有生物共用一套遗传密码.
基因诊断与基因治疗 Genetic Diagnosis and Gene Therapy
高科技產業概論 大陸生物科技 指導老師:陳永彰 組別:第五組 組員:林國樑 蔡昇穎
生命科学发展趋势、优先发展领域与资助思考
DNA多态性分析基础.
第2章 基因和染色体的关系 第1节 减数分裂和受精作用.
第二十八章 移植免疫及其免疫检测.
第十一章 基因诊断与基因治疗 刘智敏 基础医学院生物化学与分子生物学教研室.
现代生物技术试验四 绿色荧光蛋白工程菌株的构建与表达调控 黄绍松
专题 1、4 基因工程、生物技术的安全和伦理问题 考纲内容 能力要求 命题展望 1. 基因工程的诞生 2.基因工程的原理及技术
高二生物 绪论 制作人:李 绒.
指導老師:林家妤 組員:497H0007 黃夙銘 497H0009 王冠翔 497H0029 林冠宏 497H0912 王浩洋
第三章真菌感染实验诊断 第一节 真菌的基本特性 真菌是一大类具有典型细胞核,不含叶绿素,不分根、茎叶的真核细胞型微生物。
课时2 DNA的结构与复制 一、高考要求 内容标准及等级要求 学习要求 概述DNA分子结构的主要特点(B) 说出DNA分子的基本单位
一轮复习 细胞的增值.
台灣的名勝古蹟.
荧光定量PCR 刘 兵.
第四节 地域文化与人口 有儿无女不称心,有女无儿就伤心; 一儿一女不放心,多子多女才舒心。 有权的顶着生,有钱的买着生;
医学分子生物学 Medical Molecular Biology
主讲人:孙 啸 制作人:刘志华 东南大学 吴健雄实验室
青春期男生女生交往.
现代生物科技专题 简介 普通高中课程标准实验教科书选修3 2010年3月 人民教育出版社生物室 包春莹
基于微卫星标记的12个地方鸡种遗传多样性保护等级分析
第八章 DNA的复制和修复 第一节 DNA的复制 第二节 DNA的损伤及修复.
13-14学年度生物学科教研室总结计划 2014年2月.
金属学与热处理 主讲: 杨慧.
台灣史總複習.
必修1 分子与细胞 第二章 第三节 细 细胞溶胶 内质网 胞 核糖体 质 高尔基体 线粒体 第一课时 浙江省定海第一中学 黄晓芬.
Bio-tutor生物家教 97年第1次基測自然科 生物題目講解
许冰莹, Tel: ; 昆明医科大学法医学院.
现代生物技术概论 赵奇 生命科学系 校级精品课程.
聚合酶链式反应及其在基因诊断中的应用.
第十四章 基因诊断和基因治疗 表型的改变是由基因异常造成的 表型的改变是由基因异常造成的.
PCR技术及其应用 申川军 广州中医药大学生物化学教研室.
------分子生物学实验技术系列讲座Ⅲ
國文報告 儒家生死文化討論 不死鳥 組員 972BP001 彭科強 972BP008 王薪榕 972BP025 彭裕宗
第四章病毒感染实验诊断 一般原则是特异敏感、快速和简 便。首先根据流行病学和临床特 点,初步判断可能感染的病毒。
分子生物学技术在 中医药研究中的应用 上海中医药大学 方肇勤.
聚合酶链式反应 Polymerase Chain Reaction
系別:高分子材料系 班級:二A 學號:4990G046 姓名:蔡逸群
Fluorescent DNA-based enzyme sensors
中国医科大学 卫生部细胞生物学重点实验室 教育部医学细胞生物学重点实验室 医学基因组学教研室 主讲: 罗阳 教授
学 院 生命科学学院 专业班级 2007级生物技术4班 学生姓名 徐 志 超 指导教师 高 玉 千
平台特性 NCGM-SNP組SNP鑑定服務係採用美商SEQUENOM MassARRAY® System ,此平台可供用戶選擇較彈性的樣本數(94個樣本的倍數)及任意數目的SNPs 申請鑑定實驗(1~數百個SNPs)。此平台的特點在於可於單一well中進行多個SNPs (最多36 SNPs)的鑑定實驗,但哪些SNP可於同一well 內進行鑑定實驗以及單一well.
单分子测序技术对于未来基因组学研究的影响
人类基因组计划(human genome project,HGP)是由美国科学家、诺贝尔奖获得者Renato dulbecco于1986年在杂志《Science》上发表的文章中率先提出的,旨在阐明人类基因组脱氧核糖核酸(DNA)3×109核苷酸的序列,阐明所有人类基因并确定其在染色体的位置,从而破译人类全部遗传信息。美国于1990年正式启动人类基因组计划,估计到2003年完成人类基因组全部序列测定。欧共体、日本、加拿大、巴西、印度、中国也相继提出了各自的基因组研究计划。由于各国政府和科学家的共同努力,HG
DNA是生物遗传的主要物质基础,生物机体的遗传信息以密码的形式编码在DNA分子上,表现为特定的核苷酸排列顺序,并通过DNA的复制由亲代传递给子代。在后代的生长发育过程中,遗传信息自DNA转录给RNA,然后翻译成特异的蛋白质,以执行各种生命功能,使后代表现出与亲代相似的遗传性状。 1958年,遗传信息的单向.
第三章 基因工程制药.
第十一章 法醫學與DNA圖譜技術及應用.
1.了解引物设计原则 ; 2.掌握primer premier的基本使用方法 。
第3节 细胞核——系统的控制中心 本节聚集: 1.细胞核有什么功能? 2. 细胞核的形态结构是怎样的?
第二节 核酸与细胞核.
复习:蛋白质的形成 几条肽链盘曲折叠形成的蛋白质 氨基酸 …….
遗传信息的携带者——核酸 授课教师:王建友.
使用多重置换扩增(MDA)技术 对单细胞基因组进行测序
基因组学        第一节 基因组结构特征      第二节    DNA分子标记及其应用 第三节 基因组图谱的构建及应用 第四节   后基因组学.
南京农业大学动物科技学院曲亮 敬向与会专家、领导、企业家致意!.
Presentation transcript:

遗传性疾病的分子诊断 ——诊断策略和工具 上海第二医科大学附属瑞金医院 樊绮诗

用分子生物学技术通过检测基因而达到诊断疾病的目的是生物学者在分子生物学技术发展的最初阶段就有的设想。1976年人们开始在实验室进行研究,1984年以来,基因检测在许多国家已成为常规项目,主要用于遗传性疾病的诊断。

一、遗传性疾病的分类 常染色体连锁遗传性疾病 ——致病基因位于常染色体 性染色体连锁遗传性疾病 ——致病基因位于性染色体

常染色体连锁遗传性疾病 常染色体隐性遗传——位于一对常染色体上的两个等位基因均发生突变才能产生临床症状,此时所导致的相应疾病即为常染色体连锁隐性遗传性疾病。 同一对染色体中只有一个等位基因发生突变的个体称为杂合子,二个等位基因均发生突变的个体称为纯合子。 囊性纤维变:常染色体连锁隐性遗传(7q31)

常染色体连锁显性遗传——位于一对常染色体上的二个等位基因之一发生突变即产生临床症状,所导致的相应疾病即为常染色体连锁显性遗传性疾病。 特点:家系中患者数目较多,大多情况下每一代均有患者。 Huntington舞蹈症:常染色体显性遗传(4p16.3)

性染色体连锁遗传性疾病 X染色体连锁遗传:大多为隐性 (如甲型血友病、杜氏肌营养不良症),显性遗传非常罕见。 Y染色体连锁遗传

二、遗传性疾病中常见的分子异常 遗传性疾病的产生是由于一个(或数个)基因发生异常导致这些基因所载有的遗传信息受到改变,而发病是通过遗传物质的表达产物——蛋白质(或酶)的表现异常所致。 基因突变主要包括三大类,即点突变、片段性突变和动态性突变。

(一)点突变 点突变:DNA分子中单个碱基的替换 终止密码子突变:点突变导致提前产生终止密码,或终止密码突变而编码一个氨基酸使肽链延长。 错义突变、无义突变、移码突变

各种点突变所造成的后果:蛋白质分子量改变、蛋白质合成量下降、无蛋白质合成。

(二)片段性突变 核苷酸的丢失和增多 缺失:基因中硷基(遗传物质)的丢失 插入:外来基因片段插入某一基因序列中 倍增:基因内部某一段序列发生重复 基因重排:基因组中原来不在一起的基因 由于某些原因组合排列在一起。

(三)动态性突变 以三核苷酸为单位的重复序列,在传递过程中不稳定,会发生扩展,即子代的重复次数往往较亲代大为增加,因此又称动态性突变。 脆性X综合征:CGG重复 少年脊髓型共济失调:GAA重复 ……

三、遗传性疾病基因诊断的策略 (一)直接诊断策略 基因诊断的直接策略就是通过各种分子生物学技术检测基因的遗传缺陷,因此直接诊断的前提是被检测基因的正常序列和结构必须被阐明。 直接诊断由于是直接揭示遗传缺陷,因而比较可靠。

(二)间接诊断策略 间接诊断不是寻找 DNA 的遗传缺陷,而是通过分析DNA的遗传标记的多态性估计被检者患病的可能性。 间接诊断的实质是在家系中进行连锁分析,通过分析可确定个体来自双亲的同源染色体中的哪一条为致病染色体,从而判断该个体是否带有致病基因。 间接诊断不是寻找 DNA 的遗传缺陷,而是通过分析DNA的遗传标记的多态性估计被检者患病的可能性。

四、基因诊断所采用的技术

(一) 直接诊断所采用的技术 DNA片段性突变的检测 (1)Southern 印迹技术 将基因组DNA用限制性酶水解成无数片段经凝胶电泳后用碱处理使凝胶中的DNA变性为单链,转移至硝酸纤维素膜或尼龙膜上,用标记探针与变性单链杂交,可使特异条带显影。

(2)多重PCR技术 在一个PCR反应体系中放入多对引物,当基因的外显子发生缺失时,根据条带缺失的数目和引物相应的位置,可判断基因中哪一个或哪几个扩增部位发生缺失。

2. 点突变 (1) 已知点突变的检测方法 a)PCR-RFLP

b)等位基因特异性寡核苷酸杂交 被检基因经PCR扩增后转移到膜上,分别与长度为15~20bp、经标记的正常序列和突变序列的寡核苷酸探针杂交。由于20个碱基中仅一个碱基差异即可使DNA分子的Tm值下降 5~7.5℃,因此通过严格控制杂交条件,可使PCR产物仅与完全互补的探针杂交,根据有无杂交信号即可判断被检者的扩增片段中是否带有突变点。

C)PCR-ELISA 将PCR产物用ELISA方法加以检测的技术。在对目的基因扩增时,dNTP中同时混有用生物素标记的Bio-16-dUTP,使扩增产物带有生物素标记。若该产物能与突变点特异的寡核苷酸探针(3’端地高辛11-DIG-ddUTP标记)杂交,则该产物便带有地高辛标记信号,可利用与抗地高辛抗体共价结合的酶标检测系统进行显色反应,从而判断突变的存在。

d)寡核苷酸连接检测(oligonucleotide ligation assay,OLA) ——设计2个探针(探针A和B),探针A、B分别位于被检片段的5’和3’端,探针A的3’端与探针B的5’端紧邻,A探针的5’端和B探针的3’端分别用生物素和地高辛标记。设计引物时使突变位点位于A探针的3’末端处。被检标本经PCR反应后,使产物变性,同时与两个探针杂交,根据ELISA显色反应检测有无连接产物的形成即可知PCR产物中是否含有突变点。

e)DNA芯片技术(DNA chip) 在固相支持物(硅片、玻璃、聚丙烯或尼龙膜等)表面有序地阵列一系列固定于一定位置的分子(探针),当标记样品(如用化学荧光法、化学发光法标记)与探针进行杂交后,用共聚焦荧光自动扫描等技术获取信息,经计算机系统处理、分析后得到结果。

目前主要有2种类型:基片上就位合成寡核苷酸点阵芯片(ONA)和微量点样技术制作cDNA点阵芯片(CDA)。

(2)未知点突变的检测方法 a) 单链构象多态性(single-strand conformational polymorphism,SSCP) 突变DNA的PCR产物经变性后产生两条与正常 DNA构象不同的单链,在非变性聚丙烯酰胺凝胶电 泳时,不同构象的片段显示不同的电泳迁移率,从 而能区别正常与突变的DNA。SSCP只适用于检测 150~200bp长度的DNA片段。 不同顺序 不同构象 不同电泳行为

b) 变性梯度凝胶电泳(DGGE) 利用不同序列的DNA分子具有不同的融点温度(Tm)的特性。设计引物时使被扩增的目的片段含有2个不同的区域,一个Tm较高,另一个较低,将该PCR产物在由变性剂形成的梯度凝胶上进行电泳,由于正常序列的PCR产物与突变的 PCR 产物的Tm不同,在电泳过程中Tm较低的区域被部分解链的先后不同,造成电泳迁移率的变化也不同,最后在凝胶中所处的电泳位置也不同,据此可以区别正常片段与突变片段。

c)异源双链分析 (heteroduplex analysis,HA) 正常DNA和突变DNA在一起变性后再缓慢复性,可使两者互补形成异源杂合双链,并在错配处形成一个凸起。在非变性凝胶电泳时,异源双链片段会产生与相应的同源双链片段不同的迁移率,从而使二者分开。

d) 熔点曲线分析(melting curve analysis) DNA片段中突变碱基与正常碱基不能配对而形成异源双链,所产生的Tm较完全配对的同源双链的Tm低,在仪器上显示出不同的曲线从而将突变序列检测出来。所需仪器如高效液相色谱仪(DHPLC)、WAVE DNA片段分析系统、LightCycler等。

e)双脱氧指纹图谱(dideoxy fingerprinting,ddF) 是将SSCP和Sanger双脱氧测序法结合起来的一种突变检测方法。将PCR产物纯化后用与 2 条双链各自互补的两个引物分别做sanger测序反应,但不同的是仅加入一种双脱氧核苷,反应产物经聚丙烯酰胺凝胶电泳,根据突变性质电泳图谱上会显示丢失或获得一条带或者至少有一条带的迁移率会发生改变。

f.DNA序列分析(DNA sequencing) Sanger测序技术: 以待测序列的单链DNA作为模板,加入一个引物和dNTP作为底物,并加入一定比例的2’,3’-ddNTP,在DNA聚合酶的作用过程中,正常dNTP的掺入使链延伸,若ddNTP的掺入则使链终止,这样就可以得到一系列长度不同的以四种ddNTP结尾的DNA片段,经电泳后可直接读出碱基序列。

g)蛋白截短测试验 (protein truncation test,PTT) 从蛋白质水平检测由于碱基突变导致终止密码产生而使蛋白质合成提前终止产生截短的蛋白质。将正常人和病人的RNA逆转录成cDNA,并以cDNA作为模板进行PCR反应,扩增产物在体外经过转录,在无细胞提取液中能被翻译而合成蛋白质。所合成的蛋白质经聚丙烯酰胺凝胶电泳检测时会出现比正常蛋白质截短的蛋白质。

3. 动态突变的检测 PCR技术 Southern印迹技术

4.基因表达异常的检测 定量PCR技术 1. DNA结合染料技术 2. 水解探针技术(又称TaqMan probe)技术 3. 杂交探针技术(又称荧光共振能量转移技术 (fluorescence resonance energy transfer, FRET)

(二)间接诊断所采用的技术 1. 双等位基因多态性 限制性片段长度多态性(RFLP) 第一代DNA的遗传标记,具双等位基因(bi-allele)多态性,所含信息量有限。 检测方法:Southern印迹技术

2. 多等位基因多态性 小卫星序列    又称串联重复可变数目(variable number tandem repeats,VNTR), 第二代DNA的遗传标记,以6 ~70bp为单位,可重复数次至数十次,以串联形式排列,构成数量可变的串联重复序列。等位基因常常达10 个以上,信息量比RFLP大得多。 检测方法:Southern印迹或PCR技术

微卫星序列 (microsatellite) 以2~6bp为单位,重复次数可达几十次,又称短串联重复序列(STR) 。在基因组中出现的数目和频率不同,分布广泛,具高度多态性。

3. 单核苷酸多态性(single nucleotide polymorphism,SNP) 第三代DNA的遗传标记,其多态性仅表现为单个核苷酸的变异。在人类基因组中的数目可达300万个,是一种信息量非常大的标记系统。   检测方法:DNA芯片技术

1 2 8 7 C50: C49: C45: C44: Cjp: 11223 C50: C49: C45: C44: Cjp: 12212 21313 3 4 5 6 15 16 17 18 10 11 12 13 14 9 C50: C49: C45: C44: Cjp: 21121 21313 C50: C49: C45: C44: Cjp: 21121 21313 C50: C49: C45: C44: Cjp: 21121 12212 C50: C49: C45: C44: Cjp: 12212 C50: C49: C45: C44: Cjp: 21313 C50: C49: C45: C44: Cjp: 11223 12212 20 21 19 C50: C49: C45: C44: Cjp: 21313 C50: C49: C45: C44: Cjp: 21313 22 23

1 2 5.8 5.8 2.8 3.4 4.5 4.5 0.9 0.9 0.9 N N N 4.8 4.8 4.8 5 5 5 1 2 3 4 5.8 5.8 2.8 5.8 4.5 3.4 4.5 4.5 0.9 0.9 0.9 0.9 N N N N 4.8 4.8 4.8 4.8 5 5 5 5

1 2 4 3 5 6 5.8 2.8 4.8 4.8 1.2 0.9 inv N 5 5 7 8 9 10 11 2.84.80.9 - 5 5.8 4.8 1.2 inv 5 5.8 4.8 0.9 N 5 2.84.80.9 - 5 5.8 4.8 1.2 inv 5 5.8 4.8 0.9 N 5 12

(三)间接诊断的不确定性 遗传标记所带的信息性有限 新突变 基因重组 家系成员不够完整

五、基因检测的标本制备 DNA或RNA  来自外周血、体液、分泌物和组织如毛发、皮肤、肌肉、器官、肿瘤组织等

产前基因诊断标本:  羊水细胞(16~20周)  绒毛膜细胞(8~12周) 非创伤性取样

六、遗传咨询和产前基因诊断 遗传咨询 明确诊断先证者,确定引起疾病的分子异常 了解本病传递至下代的风险率 判断胎儿是否患病

遗传咨询战略路线(以DMD为例) 男孩。分子生物学研究 是。或可能是。胎儿性别? 是。孕妇是否携带者? MD是否由Dystrophin缺陷所致 女孩。不进行分子生物学研究 不是。不进行产前基因诊断,但应研究家系中其他有风险者 不是。寻找引起本病的原因

谢 谢!