第一节、性染色体与性别决定 第二节、伴性遗传 第三节、遗传的染色体学说的直接证明 第四节、其他类型的性决定 第五节、人类的性别畸形

Slides:



Advertisements
Similar presentations
第三章 性别决定与伴性遗传 一、性别决定 二、伴性遗传、伴性遗传 三、限性遗传、限性遗传 四、从性遗传、从性遗传.
Advertisements

第二章 染色体与遗传 第三节性染色体与伴性遗传. 人类染色体组型 人类染色体组型 人类染色体组型 性染色体与性别决定 性染色体与性别决定 伴性遗传 伴性遗传 伴性遗传 练习 练习 练习 常染色体 常染色体 性染色体 性染色体 性别决定的类型 性别决定的类型 XY 型性别决定XY 型性别决定XY 型性别决定XY.
1 、军官:上校 A. 教师:教授 B. 警察:狱警 C. 工人:经理 D. 白酒:红酒 该题给出一对相关的词,请同学们在 备选答案中找出一对与之在逻辑关系上最 为贴近或相似的词。
第五章 性别决定与伴性遗传           医学遗传学教研室 谭秀华  .
请思考: 同是受精卵发育的个体。为什 么有的发育成雌性,有的发育成雄 性? 雌雄个体为什么在某些遗传性 状上表现得有所不同?
第2节 伴性遗传 学习目标: 1.认识性别决定的类型与性染色体的关系, 性别决定的两种类型(XY型和ZW型)。
性别决定与伴性遗传 性别决定 伴性遗传 巩固练习.
Sex determination and sex-linked inheritance
伴性遗传 授课人:腾瑜 涞源职教中心.
第3节 伴性遗传.
高中生物必修II《遗传与进化》第2章第3节 伴性遗传.
第五章 连锁遗传和性连锁 1866年--1945年 Thomas Hunt Morgan 红眼与白眼.
伴性遗传和人类遗传病.
第五章 性别决定及与性别有关的遗传(2h) T. H. Morgan 本章要点 5.1 性别决定 5.2 伴性遗传
有关人类遗传病遗传图谱的 判断及解题技巧.
第三节 伴性遗传 厦门一中高一年备课组 林遥.
第一节、性染色体与性别决定 第二节、伴性遗传 第三节、遗传的染色体学说的直接证明 第四节、其他类型的性决定 第五节、人类的性别畸形
第3节 伴性遗传.
她们为何轻生 (中国年轻女性自杀状况报告)
社会调查表明:在我国色盲男性患者约占7%,女性患者约占0.5%
第3节 伴性遗传.
一、萨顿假说——基因在染色体上(类比推理法) 依据:基因和染色体行为存在着明显的平行关系。 具体表现如下:
第五章 性别决定与伴性遗传 Chapter 5 Sex Decision and Heredity
你能分辨出来吗?.
第三节 伴性遗传.
性别决定和伴性遗传.
性别决定和伴性遗传 西安市第34中学.
伴性遗传.
性别决定与伴性遗传 1)理解染色体组型的概念            2)性别决定的方式       3)伴性遗传的传递规律 逸之轩工作室.
色盲症的发现 道尔顿发现色盲的小故事 道尔顿在圣诞节前夕买了一件礼物----一双“棕灰色”的袜子,送给妈妈。妈妈却说:你买的这双樱桃红色的袜子,我怎么穿呢? 道尔顿发现,只有弟弟与自己看法相同,其他人全说袜子是樱桃红色的。 道尔顿经过分析和比较发现,原来自己和弟弟都是色盲,为此他写了篇论文《论色盲》,成了第一个发现色盲症的人,也是第一个被发现的色盲症患者。
第3节 伴性遗传.
第三节 伴性遗传 厦门一中高一年备课组 林遥.
第4讲 基因在染色体上 伴性遗传.
性染色体和伴性遗传.
基因在哪里? 哪位科学家用实验证明了这一假说? 果蝇的红眼与白眼这对性状与什么有关? 这说明控制果蝇眼色的基因位于什么染 色体上?
早在1800多年前,犹太人在自己的教规中就做出规定:如果对一个妇女所生的两个男孩实施“割礼”(包皮环切术)时,两个男孩都因出血不止而死亡,那么,此妇女的姐妹所生的男孩均免除这种“割礼”。 思考:为何有些男孩在接受“割礼”时,会因流血不止而死亡?这条犹太教规依据的遗传学原理是什么?
她们为何轻生 (中国年轻女性自杀状况报告)
第三节 伴性遗传.
§6.3 性别决定和伴性遗传. §6.3 性别决定和伴性遗传 人类染色体显微形态图 ♀ ♂ 它们是有丝分裂什么时期的照片? 在这两张图中能看得出它们的区别吗?
第 2讲 基因在染色体上、伴性遗传 1.萨顿的假说 基因是由染色体携带着从亲代传递给下一代的。也就是说,
第2节 基因在染色体上.
请思考: 同是受精卵发育的个体。为什 么有的发育成雌性,有的发育成雄 性? 雌雄个体为什么在某些遗传性 状上表现得有所不同?
伴性遗传.
第20章 生物的遗传和变异 第四节 性别和性别决定 淮南二十六中 鲍娟娟. 第20章 生物的遗传和变异 第四节 性别和性别决定 淮南二十六中 鲍娟娟.
讨论: 1.分离定律适用于几对基因控制着的几对相对性状? 2.一对相对性状中如何确定显隐性的关系?
欢迎光临指导.
基 因 的 分 离 定 律 2002年4月.
性别决定和伴性遗传.
Welcome to study biology !
第二章 基因与染色体的关系 第3节 伴性遗传.
拇指竖起时弯曲情形 1、挺直2、拇指向指背面弯曲 食指长短 1、食指比无名指长 2、食指比无名指短 双手手指嵌合
第二章 基因和染色体的关系 类比推理 一、基因在染色体上 萨顿的推论
授课人:吴群花.
复习目标: 1、阐述伴性遗传的特点; 2、运用资料分析的方法,总结人类红绿色盲症的遗传规律; 3、举例说出伴性遗传在实践中的应用.
第2节 伴性遗传.
第3节 伴性遗传.
维多利亚女王家族照片.
第二章 基因与染色体的关系 第三节 伴性遗传.
第2、3节 基因在染色体上、伴性遗传.
第三章 性别决定和性相关遗 性别决定(sex determination) 性别分化(sex differentiation )
第3节 伴 性 遗 传.
第五章 遗传的基本定律及其扩展 第一节 分离定律 一、一对相对性状的杂交试验 (一)豌豆杂交试验
一、基因分离定律的实质 位于一对同源染色体上的等位基因,具有 一定的独立性,生物体在进行减数分裂形成配
《遗传学》 丽江师范高等专科学校 生命科学系 王石华 博士/副教授
第四章 连锁遗传规律 第一节 性状连锁遗传的表现 第二节 连锁遗传的解释 第三节 连锁和交换的遗传机理 第四节 交换值及其测定
性別的關鍵 區分 XY型 XO型 ZW型 單性生殖 決定因素 精子 卵 卵是否受精 ♂的染色體 XY X ZZ n ♀的染色體 XX ZW
基于高中生物学理性思维培养的实践性课例开发
实 验 七 果蝇伴性遗传.
Chapter 4 Mendelian Inheritance
必修二 遗传与进化 第二单元 基因和染色体的关系.
Presentation transcript:

第一节、性染色体与性别决定 第二节、伴性遗传 第三节、遗传的染色体学说的直接证明 第四节、其他类型的性决定 第五节、人类的性别畸形 第五章 性别决定与伴性遗传 第一节、性染色体与性别决定 第二节、伴性遗传 第三节、遗传的染色体学说的直接证明 第四节、其他类型的性决定 第五节、人类的性别畸形

第一节、性染色体与性别决定 P116 (一)、性染色体 性染色体(sex chromosome) 常染色体(autosome, A) 成对染色体中直接与性别决定有关的一个或一对染色体。 成对性染色体往往是异型的:形态、结构、大小、功能上都有所不同。 常染色体(autosome, A) 同源染色体是同型的。 例:果蝇(Drosophila melangaster, 2n=8)染色体组成与性染色体。

果蝇的常染色体与性染色体

果蝇的常染色体和性染色体

(二)、性染色体决定性别的方式 雄杂合型(XY型):P117 两种性染色体分别为X、Y; 雄性个体的性染色体组成为XY(异配子性别),产生两种类型的配子,分别含X和Y染色体; 雌性个体则为XX(同配子性别),产生一种配子,含X染色体。 性比一般是1 : 1。 哺乳类、某些昆虫、鱼、两栖类、雌雄异株植物……

The traditional human karyotypes derived from a normal female and a normal male.

Figure 5.4 (a) The Protenor mode of sex determination where the heterogametic sex is XO and produces gametes with or without the X chromosome.

Figure 5.4 (b) The Lybaeus mode of sex determination, where the heterogametic sex is XY and produces gametes with either an X or a Y chromosome.

(二)、性染色体决定性别的方式 2.雌杂合型(ZW型): P118 两种性染色体分别为Z、W染色体; 雌性个体性染色体组成为ZW(异配子性别),产生两种类型的配子,分别含Z和W染色体; 雄性个体则为ZZ(同配子性别),产生一种配子含Z染色体。 性比一般是1 : 1。 鳞翅目昆虫,某些两栖类、爬行类、鸟类

(二)、性染色体决定性别的方式

第二节、伴性遗传 P119 伴性遗传(sex-linked inheritance) : 也称为性连锁(sex linkage),指位于性染色体上的基因所控制的某些性状总是伴随性别而遗传的现象;特指X或Z染色体上基因的遗传。 1910年摩尔根等在研究果蝇性状遗传时最先发现性连锁现象,研究结果同时还最终证明了基因位于染色体上。 果蝇的眼色不仅受pr+/pr基因控制(红眼对紫眼显性); 还受另一对基因W/w控制(红眼对白眼为显性)。

(一)、果蝇眼色基因W/w的遗传 果蝇眼色:红眼(W)对白眼(w)为显性; P: 红眼(♀) × 白眼(♂) ↓ ↓ ↓ ↓ F1: 红眼(♀) × 红眼(♂) ↓ F2: ¾ 红眼 : ¼ 白眼 (♀/♂) (♂) 解释:眼色基因(W, w)位于X染色体上,而Y染色体上没有决定眼色的基因,XwY的表现型为白眼。

(一)、果蝇眼色基因W/w的遗传 果蝇眼色:红眼(W)对白眼(w)为显性; P: 红眼(♀) × 白眼(♂) ↓ F1: 红眼(♀) × 红眼(♂) F2: ¾ 红眼 : ¼ 白眼 (♀/♂) (♂) 解释:眼色基因(W, w)位于X染色体上,而Y染色体上没有决定眼色的基因,XwY的表现型为白眼。

果蝇眼色性连锁遗传的解释

果蝇眼色的测交试验 为了证明F1中雌果蝇从父本得到的是带w基因的X染色体(Xw);摩尔根等进行了下述测交试验: ¼ 红眼(♀)(XWXw) 表型为白眼的雄果蝇为父本。 测交结果(Ft表现): F1 测交亲本 红眼(♀)×白眼(♂) (XWXw) (XwY) ↓ Ft ¼ 红眼(♀)(XWXw) ¼ 红眼(♂)(XWY) ¼ 白眼(♀)(XwXw) ¼ 白眼(♂)(XwY)

(二)、其它物种的性连锁遗传 人类X染色体性连锁遗传P123 ZW性别决定型的Z染色体性连锁遗传。 位于X染色体上的基因的遗传均会表现出类似果蝇眼色基因W/w的遗传现象; 例如:红绿色盲、A型血友病等。 ZW性别决定型的Z染色体性连锁遗传。 与X染色体上基因的遗传非常相似; 只是在与性别关系上是相反的。 例:鸡的芦花条纹遗传。

(二)、其它物种的性连锁遗传 人类的色盲遗传是性连锁的,已知控制色盲的基因是隐性c,位于X染色体上,Y上不携带其等位基因。 人类的色盲遗传 P127 人类的色盲遗传是性连锁的,已知控制色盲的基因是隐性c,位于X染色体上,Y上不携带其等位基因。 XCXC, XC Xc , XC Y 不色盲 XcXc 色盲 XcY 色盲 如果母亲色盲而父亲正常,则儿子必是色盲,女儿表现正常。 如果父亲色盲而母亲正常,则儿女均表现正常。(如图)

(二)、其它物种的性连锁遗传 卢花鸡的毛色遗传也是性连锁P129 卢花基因B对非卢花基因b为显性,Bb这对基因位于z染色体上而W染色体上不含有它的等位基因。 以雌芦花鸡(ZBW)与非芦花鸡雄鸡(ZbZb)杂交,F1公鸡的羽毛全是芦花,而母鸡全是非芦花。 如果进行反交, 以非芦花雌鸡(ZbW)作母本与芦花雄鸡(ZBZB)杂交,F1公鸡和母鸡的羽毛全是芦花。(如图)

三、限性遗传 P127(人类的Y连锁遗传) 限性遗传(sex-limited inheritance): 指位于Y/W染色体上基因所控制的性状,它们只在异配性别上表现出来的现象。 位于Y/W染色体上的基因(限性遗传): 由于Y/W染色体仅在异配性别中出现,因此其上基因仅在异配性别中才可能表现,并且无论显性基因还是隐性基因都会得到表现。 位于X/Z染色体上的基因(伴性遗传): 在同配性别中总是成对存在,并可能存在显性纯合-杂合-隐性纯合三种情况,隐性基因可能不能表现出来; 在异配性别中成单存在,无论显隐性也会直接表现出来。

三、限性遗传 P127(人类的Y连锁遗传) 限性遗传(sex-limited inheritance):毛耳(hairy ears) P127

四、从性遗传 从性遗传(sex-controlled inheritance): 也称为性影响遗传(sex-influenced inheritance):控制性状的基因位于常染色体上,但其性状表现受个体性别影响的现象。 从性遗传的实质是常染色体上基因所控制的性状受到性染色体遗传背景和生理环境(内分泌等因素)的影响。 例:绵羊角的遗传

绵羊角的从性遗传 而H/h基因位于常染色体上。 人的秃头性状也表现为类似的遗传现象。

第三节 染色体学说的直接证据 P130 布里吉斯(Bridges, C) 发现X染色体的不分离现象(1916年)

P 白眼♀ × 红眼♂ (Xw Xw ) (X+Y) 红眼♀ 白眼♂ 红眼不育♂ 白眼♀×红眼♂ 正常 初级例外 (X+Y) 红眼♀ 白眼♂ 红眼可育♂ 白眼♀ 96%正常 4%次级例外 图5-16 果蝇眼色遗传的初级例外和次级例外

布里吉斯的模型比其它模型更具有说服力: 1、初级后代的细胞学研究表明雌性为XXY,雄性为XO,证实了布里吉斯的推论, 2、次级后代的细胞学研究表明雌性为XXY,雄性为XY,和推理相符。 3、例外白眼雌蝇的红眼女儿一半为XXY,一半为XX,和镜检结果一致。 4、例外白眼雌蝇的白眼儿子中也将产生例外的后代,这些白眼儿子都是XYY,这也同样得到了证实。

布里吉斯的实验最终将W/W+基因定位在X染色体上,为遗传的染色体学说提供了有力而直接的证据,使遗传学向前迈出了重要的一步。