第一章 绪论 内容简介:在简单回顾和罗列经典物理困难的基础上,本章扼要的介绍了普朗克的能量量子化的概念、爱因斯坦的光量子和玻尔的量子论,以及如何利用这些量子化的假说解决经典困难。然后引入光的波粒二象性和德布罗意波。本章的许多结果,最后虽然被量子力学在更高的水平上重新给出,但本章的许多概念,即使在今天,对于物理学工作者仍然是极其重要的。

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
物理思想与方法 1. 量子化的思想 能量发射和吸收时的量子化 —— 黑体辐射; 能量传输时的量子化 —— 光电效应、康普顿散射; 能量状态的量子化 —— 能级; 角动量的量子化;角动量空间取向的量子化; 自旋的量子化; 2. 波粒二象性的思想 一切物质都有粒子性和波动性,即两面性; 粒子性:整体性(不可分割),抛弃轨道概念;
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第十五章 量子物理 15-6 德布罗意波 实物粒子的二象性 物理学 第五版 1 光电效应 光子 爱因斯坦方程 1 “ 光量子 ” 假设 光可看成是由光子组成的粒子流,单个光 子的能量为. 2 爱因斯坦光电效应方程 逸出功与 材料有关.
量 子 力 学.
碰撞 两物体互相接触时间极短而互作用力较大
碰撞分类 一般情况碰撞 1 完全弹性碰撞 动量和机械能均守恒 2 非弹性碰撞 动量守恒,机械能不守恒.
第十六章 动量守恒定律 第4节 碰 撞.
四、麦克斯韦速率分布函数 大量分子看作小球 总分子数 N 设 为具有速度 分子数 . 有分布规律与速度有关
康普顿散射的偏振研究 姜云国 山东大学(威海) 合作者:常哲 , 林海南.
§2.4 光电效应 ∝ I i (实验装置) 饱和电流 iS iS :单位时间 阴极产生的光电子数… 遏止电压 Ua U
第一节 光电效应 第二节 康普顿效应 第三节 实物粒子的波粒二象性 第四节 恒星演化与粒子物理
第10章 光与物质的相互作用 普朗克(Max Karl Ernst Ludwig Planck, 1858―1947)
量子概念是 1900 年普朗克首先提出的,距今已有一百多年的历史
Chap. 7 Quantum Optics.
§18-1 热辐射 普朗克的量子假设 1. 热辐射现象 固体或液体,在任何温度下都在发射各种波长的电磁波,这种由于物体中的分子、原子受到激发而发射电磁波的现象称为热辐射。所辐射电磁波的特征仅与温度有关。 固体在温度升高时颜色的变化 800 K 1000 K 1200 K 1400 K 物体辐射总能量及能量按波长分布都决定于温度。
量子统计的建立 年产生了两种量子统计法:玻色统计法和费米统计法。.
第2章 电磁辐射的量子性.
实验 光电效应 三联学院实验中心.
1 光波、光线与光子 §1.5 光波场的量子性.
第6章 光电式传感器.
量子物理初步.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
7.3.普朗克辐射公式和能量子假说   黑体辐射辐出度 r0(,)等于普适函数, 因此要解释实验得出的黑体辐射能量曲线, 归根结底就是确定普适函数的形式.   然而, 所有想从经典理论中得出这一函数的正确形式的尝试都遭到了失败. (1) 维恩公式和瑞利-金斯公式   维恩假设分子辐射频率与分子热运动动能成正比.因此按频率的能量分布与按速度的麦克斯韦分布类似,由此得出光谱分布函数的解析式:
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第一章 商品 第一节 价值创造 第二节 价值量 第三节 价值函数及其性质 第四节 商品经济的基本矛盾与利己利他经济人假设.
Presenter: 宫曦雯 Partner: 彭佳君 Instructor:姚老师
光学谐振腔的损耗.
Chap. 7 Quantum Optics.
§3.7 热力学基本方程及麦克斯韦关系式 热力学状态函数 H, A, G 组合辅助函数 U, H → 能量计算
第3课时 波粒二象性 基 础 回 扣 1.光电效应 (1)光电效应定义:物体在光(包括不可见光)的照射下从表面发射出电子的现象叫光电效应.发射出的 常称为光电子. (2)光电效应的规律: ①每种金属都有一个截止频率(极限频率),入射光的频率必须 截止频率才能产生光电效应. 电子.
第六章 自旋和角动量 复旦大学 苏汝铿.
NaI(TI)单晶伽马能谱仪实验验证 朱佩宇 2008年1月3日.
LD Didactic GmbH, Leyboldstrasse.1, Huerth, Germany –2008
Raman Spectra 姚思嘉 合作者:蔺楠、尹伊伦.
§7.4 波的产生 1.机械波(Mechanical wave): 机械振动在介质中传播过程叫机械波。1 2 举例:水波;声波.
第一章 半导体材料及二极管.
光电效应实验 南京理工大学物理实验中心 同学们好,本次实验为大家讲解光电效应实验。
薛定谔(Erwin Schrodinger,1887~1961)奥地利物理学家 .
第8章 静电场 图为1930年E.O.劳伦斯制成的世界上第一台回旋加速器.
第三章 辐射 学习单元2 太阳辐射.
看一看,想一想.
从物理角度浅谈 集成电路 中的几个最小尺寸 赖凯 电子科学与技术系 本科2001级.
第7讲 自旋与泡利原理.
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
一、驻波的产生 1、现象.
3. 分子动力学 (Molecular Dynamics,MD) 算法
作业 P152 习题 复习:P 预习:P /5/2.
第四章 热力学基础 物理学. 本章概述 一、什么是热学? 研究物质处于热状态下有关性质和规律的物理学分支学科。 二、研究方法
激光器的速率方程.
第15章 量子力学(quantum mechanics) 初步
光电效应的发现与三位诺贝尔物理学奖 1 赫兹发现了光电效应现象
相关与回归 非确定关系 在宏观上存在关系,但并未精确到可以用函数关系来表达。青少年身高与年龄,体重与体表面积 非确定关系:
物理化学 复旦大学化学系 范康年教授 等 2019/5/9.
一 测定气体分子速率分布的实验 实验装置 金属蒸汽 显示屏 狭缝 接抽气泵.
量子力学 复旦大学 苏汝铿.
立体图形的表面积和体积 小学数学总复习.
教科版五年级上册第二单元第1课 1.光和影 莲都区天宁小学 陈建秋.
热力学第一定律的应用 --理想气体等容过程、定容摩尔热容 --理想气体等压过程 、定压摩尔热容.
实验二 基尔霍夫定律 510实验室 韩春玲.
§17.4 实物粒子的波粒二象性 一. 德布罗意假设(1924年) 波长 + ? 假设: 实物粒子具有 波粒二象性。 频率
LCS之自由电子激光方案 吴钢
φ=c1cosωt+c2sinωt=Asin(ωt+θ).
FH实验中电子能量分布的测定 乐永康,陈亮 2008年10月7日.
热力学与统计物理 金晓峰 复旦大学物理系 /7/27.
《智能仪表与传感器技术》 第一章 传感器与仪表概述 电涡流传感器及应用 任课教师:孙静.
Presentation transcript:

第一章 绪论 内容简介:在简单回顾和罗列经典物理困难的基础上,本章扼要的介绍了普朗克的能量量子化的概念、爱因斯坦的光量子和玻尔的量子论,以及如何利用这些量子化的假说解决经典困难。然后引入光的波粒二象性和德布罗意波。本章的许多结果,最后虽然被量子力学在更高的水平上重新给出,但本章的许多概念,即使在今天,对于物理学工作者仍然是极其重要的。

第一章 绪论 1.1 经典物理学的困难 1.2 玻尔的量子理论 1.3 微观粒子的波粒二象性

1.1经典物理的困难 一、黑体辐射 1.黑体 定义:如果一个物体在任何温度下,对任何波长的电磁波都完全吸收,而不反射与透射,则称这种物体为绝对黑体,简称黑体。 说明: (1)黑体是个理想化的模型。 (2)对于黑体,在相同温度下的辐射规律是相同的。

1.1经典物理的困难 2. 热辐射 热辐射现象:任何温度下,宏观物体都要向外辐射电磁波。电磁波能量的多少,以及电磁波按波长的分布都与温度有关,故称为热辐射。 热平衡现象:辐射和吸收的能量恰相等时称为 热平衡。此时温度恒定不变。

1.1经典物理的困难 3. 与辐射有关的物理量 单色辐出度 从热力学温度为T 的黑体的单位面积上、单位时间内、在单位波长范围内所辐射的电磁波能量,称为单色辐射出射度,简称单色辐出度,用Mλ(T)表示。 辐射出射度 在单位时间内,从热力学温度为T的黑体的单位面 积上、所辐射的各种波长范围的电磁波的能量总和 ,称为辐射出射度,简称辐出度。

1.1经典物理的困难 4.黑体辐射 黑体辐射 图1.1 如图1.1所示,可以将一空腔看作黑体,当一束光线如射时,它将被完全吸收而无法逃出。当空腔与内部的辐射处于平衡时,腔壁单位面积所发射的辐射能量和它所吸收的辐射能量相等。 入 射 光 线

1.1经典物理的困难 4.1 斯特藩-玻尔兹曼定律 黑体的辐出度与黑体的热力学温度的四次方成正比,这就是斯特藩-玻耳兹曼定律。 1700k 图1.2 s=5.67×10-8W· m-2· K-4为斯特藩-玻耳兹曼常量

随着黑体温度的升高,其单色辐出度最大值 所对应的波长按照 的规律向短波方向移动,即 1.1经典物理的困难 4.2 维恩位移定理 随着黑体温度的升高,其单色辐出度最大值 所对应的波长按照 的规律向短波方向移动,即 从图1.2可看出单色辐出度最大值随温度的变化

1.1经典物理的困难 4.3 维恩公式 说明:维恩公式只在短波波段与实验符合,而在长波波段与实验差别较大。如图1.3 维恩假定了谐振子的能量按频率的分布类似于麦克斯韦速率分布律,然后用经典统计物理学方法导出了下面的公式 、 为实验确定的参数 图1.3

1.1经典物理的困难 说明:瑞利-金斯公式在长波波段与实验符合得很好,但在短波波段与实验有明显差异,这就是著名的“紫外灾难”。如图1.4 4.4 瑞利-金斯公式 1900年,瑞利和金斯根据经典电动力学和经典统计力学理论导出黑体单色辐出度与波长和温度关系的函数: 为玻尔兹曼常数 图1.4

1.1经典物理的困难 4.5 普朗克假说 普朗克黑体辐射公式 4.5.1 普朗克假说 4.5 普朗克假说 普朗克黑体辐射公式 4.5.1 普朗克假说 在瑞利-金斯公式和维恩公式的基础上,普朗克进一步分析实验曲线,他假设黑体辐射空腔中振子的振动能量并不像经典理论所主张的那样和振幅平方成正比并且连续变化,而是和振子的频率 成正比,并且只能取离散值 、 、 、 、 是普朗克常数 与此相应,腔中辐射场和温度为T的腔壁物质达到热平衡后,能量也是一份份的,只能取 的整数倍。

1.1经典物理的困难 4.5.2 普朗克公式 在普朗克架设的基础上,按照玻尔兹曼分布律,1900年,普朗克导出公式 这就是普朗克辐射公式。

1.1经典物理的困难 说明 :1.普朗克假说不仅圆满地解释了绝对黑体的辐射问题,还解释了固体的比热问题等。它成为现代理论的重要组成部分。 2.从普朗克公式可导出斯特藩-玻耳兹曼定律,维恩公式,瑞利—金斯公式。 维恩位移定理 斯忒藩-玻尔兹曼定律 维恩公式 瑞利-金斯公式

1.1经典物理的困难 4.5.3 普朗克假说的意义 4.6 黑体辐射的应用 4.5.3 普朗克假说的意义 普朗克抛弃了经典物理中的能量可连续变化的旧观点,提出了能量子、物体辐射或吸收能量只能一份一份地按不连续的方式进行的新观点。这不仅成功地解决了热辐射中的难题,而且开创物理学研究新局面,标志着人类对自然规律的认识已经从从宏观领域进入微观领域,为量子力学的诞生奠定了基础。 4.6 黑体辐射的应用 物体温度超过绝对零度时,就会向外辐射电磁波(一般是红外辐射),利用物体的这种性质,可以制作各种探测仪,探测物体性质,在军事上有重要应用。

1.1经典物理的困难 二、光电效应 1.光电效应的基本概念 金属中的自由电子在光的照射下,吸收光而能逸出金属表面的现象叫光电效应,所逸出的电子叫光电子,由光电子形成的电流叫光电流,使电子逸出某种金属表面所需的功称为该种金属的逸出功。 当K、A之间的反向电势差等于U0时,从K逸出的动能最大的电子刚好不能到达A,电路中没有电流, U0叫遏止电压。 2.实验装置 入射光线 V R + - G K 逸出功 是截至频率

1.1经典物理的困难 光电效应的特点 1.对于一定的金属材料做成的电极,有一个确定的临界频率 。当照射光频率 时,无论光的强度多大,都不会观测到电子从电极上射出。 2.每个光电子的能量只与照射光的频率有关,而与光强度无关。光强度只影响光电流的强度,即单位时间内从电极面积上逸出的电子的数目。 3.当入射光频率 时,不管光有多微弱,只要光照上,立刻就观测到光电子。

1.1经典物理的困难 4.经典理论遇到的困难 (1)经典认为光强越大,饱和电流应该大,光电子的初动能也该大。但实验上饱和电流不仅与光强有关而且与频率有关,光电子初动能也与频率有关。 (2)只要频率高于红限,既使光强很弱也有光电流;频率低于红限时,无论光强再大也没有光电流。而经典认为有无光电效应不应与频率有关。 (3)瞬时性。经典认为光能量分布在波面上,吸收能量要一定的时间,即需能量的积累过程。

1.1经典物理的困难 5.爱因斯坦光电方程 1、爱因斯坦光子假说 1905年,爱因斯坦对光的本性提出了新的理论,认为光束可以看成是由微粒构成的粒子流,这些粒子流叫做光量子,简称光子。在真空中,光子以光速c运动。一个频率为 的光子具有能量 2 、光电效应的爱因斯坦方程 是电子质量。

1.1经典物理的困难 3、光电效应解释 a.饱和光电流强度与光强成正比: 对于给定频率的光束来说,光的强度越大,表示光子的数目越多,光电子越多,电流越大。 b. 临界频率的存在: 当入射光频率低于临界频率 , 不会有光电子逸出,只有当入射光频率足够高 ,以致每个光子的能量足够大,电子才能克服逸出 功而逸出金属表面。所以临界频率

1.1经典物理的困难 c.截止电压与频率成线性关系 d.光电效应的瞬时性: 当电子一次性地吸收了一个光子后,便获得了 的能量而立刻从金属表面逸出,没有明显的时间滞后。

1.1经典物理的困难 四、康普顿效应 1、康普顿效应的解释 在1922年至1923年间,康普顿研究了X射线经金属、石墨等物质散射后的光谱成分,结果表明:散射的X射线中不仅有与入射线波长相同的射线,而且也有波长大于入射线波长的射线。这种现象称为康普顿效应。 1、康普顿效应的解释 在解释康普顿效应时,经典理论遇到困难,爱因斯坦的光子论却圆满地解释了它。当波长为 的X射线进入散射后,光子将要与构成物质的粒子发生弹性碰撞,进行能量和动量的传递。传递方式有两种:

1.1经典物理的困难 a.光子与点阵离子的碰撞 由于光子与点阵离子发生弹性碰撞,碰撞后,散射波长不变。 b.光子与自由电子的碰撞 利用相对论公式和能量、动量守恒定律,得到散射后光子波长的变化量为: 散射光子v’ 入射光子v m0为电子的静止质量 x 自由电子e

1.1经典物理的困难 2.光的波粒二象性 对于光的本性的解释,历史上曾长期争论不休。而光的波动性早已被实验所证实,光的粒子性只是到了近代,才被黑体辐射、光电效应和康普顿效应以及其它试验所验证。 波动性和粒子性是光的本性的不同侧面地描述。光在传播过程中表现出波的特性,而在与物质相互作用的过程中表现出粒子性。 从统计观点看,光是又具有一定能量、动量和质量的微观粒子组成的,在它们运动的过程中,在空间某处发现它们的几率却遵从波动的规律。