概率论与数理统计 课件制作:应用数学系 概率统计课程组.

Slides:



Advertisements
Similar presentations
金融一班 王亚飞 王亚飞 王浩浩 王浩浩 吴海玥 吴海玥 我 连云港 的 家 乡 连云港 连云港,位于东经118°24′~119°48′和北纬 34°~35°07′之间,古称郁洲、海州,民国时称 连云市,建国后称新海连市,别称“港城”。东 西长129公里,南北宽约132公里,水域面积 平方公里。连云港市也是我国于1984年.
Advertisements

第一节 工业的区位因素与区位选择. 戴尔公司生产的电脑 夏新电子股份有限公司 金龙客车 土地 资金 能源 水源 劳动力 原料 零部件 产品产品 废渣 废水 废气.
商管群科科主任 盧錦春 年 3 月份初階建置、 4 月份進階建置、 5 月份試賣與對外營業。
配备计算机教室、多媒体教室、图书室、卫生室、 实验室、仪器室、音体美劳器材室、心理咨询室、少先 队活动室、教师集体备课室等专用教室。实验室、仪器 室全部按照省标准配备器材,演示实验开设率达 100% 。 学校现有图书 6050 册,生均 40 册。有一个 200 米环形跑 道的运动场地。 学校基本情况.
103 年新北市環保知識擂台賽培育計畫 新北市政府環境保護局 大 綱 計畫緣起 計畫期程及內容 計畫分工及配合事項 討論 Q&A 2.
長得像的圖形 設計者:嘉義縣興中國小 侯雪卿老師 分享者:高雄市中山國小 江民瑜老師 高雄市勝利國小 許嘉凌老師.
课例评析—— 《回乡偶书》和《渔歌子》 评课人:冯琴.
就作文本身而言,题目堪称“眉目”,是作文的“眼睛”,从某种程度上说,它是作文材料和主题的浓缩或概括。
8 赌徒的难题——概率论的产生与发展.
文化创新的途径.
杭州中学数学网: 第三章《直线与方程》 第四章《圆与方程》 《解析几何初步》 教学解读 杭州市教育局教研室 李学军 联系电话 电子信箱 杭州中学数学网:
解析几何 空间直角坐标系 阜宁县东沟中学高一数学组.
与优秀的人在一起
第八章 影响消费心理的社会因素 第一节 消费习俗的影响 第二节 流行对消费行为的影响 第三节 消费习惯与消费心理 第四节 感性消费与消费心理
华东师范大学第二附属中学 作者:高二(7)班 顾韬 景琰杰 指导教师:张成鹏
2009—2010学年第一学期 小学品德与社会课程教学监控情况分析 潘诗求 2010年3月
15世纪欧洲人绘制的世界地图.
第二组:栝蒌薤白白酒汤 讲解:何楠 资料收集:李哲豪 陶雪 PPT制作:周飘 李昕蓉 讲稿书写:邓楹君 黄丽.
新人教历史必修二 第二单元 资本主义世界市场的形成和发展.
概率论与数理统计 课件制作:应用数学系 概率统计课程组.
千里之行, 始于规范 兴隆中学 八(1)班主题班会.
离散随机变量及分布律 定义 个或可列个, 则称 X 为离散型随机变量 描述X 的概率特性常用概率分布或分布律 即 X 或 P §2.2
一、平面点集 定义: x、y ---自变量,u ---因变量. 点集 E ---定义域, --- 值域.
第7课 新航路的开辟 第7课 新航路的开辟.
我在远航,我在远航,穿越海洋,重回故乡;我在远航,乘风破浪,向你靠近,获得自由
股票、债券、和保险 投资理财的话题.
第二课 战国时期的 百家争鸣 呼伦贝尔学院附属中学:司顺英.
第三课 走向自立人生.
管理学基本知识.
电阻 新疆兵团四师76团中学.
油画《蒙娜丽莎》 哥伦布像 以上图片产生于哪两个 历史事件中?.
外貌和能力哪个更重要.
滁州学院首届微课程教学设计竞赛 课程名称:高等数学 主讲人:胡贝贝 数学与金融学院.
“深入推进依法行政加快建设法治政府” -《法治政府建设实施纲要》解读
从此,我不在沉默寡言 那一刻 就在这一刻 世上还有爸爸好 我 长 大 了 张绅 4 文苑芬芳
第九章 多元函数微分法 及其应用 一元函数微分学 推广 多元函数微分学 注意: 善于类比, 区别异同.
第六节 可降阶的二阶微分方程 一、 型的微分方程 二、 型的微分方程 三、 型的微分方程.
常用逻辑用语 知识体系: 命题 常用逻辑性用语 充分条件、必要条件、充要条件 基本逻辑连结词 量词.
1.5 充要条件.
第 二 章 离散型随机变量.
从容行走,优雅为师 江苏省梁丰高级中学 任小文
网络游戏 对 大学生生活方式 影响 11影视动画2班 石天启组.
觀察內容: 時間 作息 觀察內容 9:30~9:40 角落分享
拾貳、 教育行政 一、教育行政的意義 教育行政,可視為國家對教育事務的管理 ,以增進教育效果。 教育行政,乃是一利用有限資源在教育參
课标教材下教研工作的 实践与思考 山东临沂市教育科学研究中心 郭允远.
天气和气候.
課程銜接 九年一貫暫行綱要( )  九年一貫課程綱要( ) 國立台南大學數學教育系 謝 堅.
2.4 二元一次方程组的应用(1).
导入 21世纪教育网经纬社会思品工作室制作 我们可以通过哪些媒介(途径)获知这些消息?.
十二生肖的故事.
資源配置的五個面向 生產什麼 如何生產 何時生產 何處生產 生產收入如何分配 基礎經濟學 Chapter 2 需求﹑供給與均衡.
資源配置的五個面向 生產什麼 如何生產 何時生產 何處生產 生產收入如何分配 基礎經濟學 Chapter 2 需求﹑供給與均衡.
第四章 消費者選擇與需求 總效用與邊際效用 消費者均衡 需求曲線 消費者剩餘.
§4.2 中心极限定理   定理1 独立同分布的中心极限定理 设随机变量序列 相互独立, 服从同一分布,且有期望和方差: 则对于任意实数 x ,
第7章 機率分配 離散型機率分配 連續型機率分配.
Poisson分布的统计分析.
学习中苦多?乐多? ——高二(1)班主题班会.
資源配置的五個面向 生產什麼 如何生產 何時生產 何處生產 生產收入如何分配 基礎經濟學 Chapter 2 需求﹑供給與均衡.
概率论 ( Probability) 2016年 2019年4月15日5时31分.
第五讲 从常用连续分布到二维变量分布 本次课讲授:第二章的 ; 下次课讲第三章的 ;
2 需求供給與均衡.
§2.2 离散型随机变量及其概率分布 离散随机变量及分布律 定义 若随机变量 X 的可能取值是有限多个
第13课 东汉的兴亡.
第四章 随机变量的数字特征 关键词: 数学期望 方差 协方差、相关系数 其它数字特征.
13.2 物质波 不确定关系 微观粒子的波粒二象 + ? 德布罗意假设(1924年): 实物粒子具有波粒二象性。 波长 频率
3-3 随机误差的正态分布 一、 频率分布 在相同条件下对某样品中镍的质量分数(%)进行重复测定,得到90个测定值如下:
繁星推薦系統 楊曉婷 副理 教育的服務 是我們的責任.
單元主題名: 大家都是好朋友 設計者:柯淑惠、林雨欣.
7 間斷隨機變數及其常用的機率分配  學習目的.
用加減消去法解一元二次聯立方程式 台北縣立中山國中 第二團隊.
Presentation transcript:

概率论与数理统计 课件制作:应用数学系 概率统计课程组

2.2-2.3 随机变量的分布函数 一、离散型随机变量的概念 二、离散型随机变量的分布函数 三、常见的离散型随机变量的概率分布

随机变量的分类 通常分为两类: 离散型随机变量 随机变量 连续型随机变量 所有取值可以逐个 一一列举 全部可能取值不仅 无穷多,而且还不 能一一列举,而是 充满一个区间. 连续型随机变量

一、离散型随机变量的概念 非负性 规范性 定义: 若随机变量 X 的可能取值是有限多个或无穷 可列多个,则称 X 为离散型随机变量. 描述离散型随机变量的概率特性常用它的概率分布 或分布律,即 概率分布的性质 非负性 规范性

二、离散型随机变量的分布函数 F( x) 是分段阶梯函数,在 X 的可能取值 xk 处发生间断,间断点为第一类跳跃间断点.

分布函数图 概率函数图 注意右连续

注意: 离散型随机变量的概率分布分以下几步来求: (1)确定随机变量的所有可能取值; (2)设法(如利用古典概率)计算取每个值的概率. (3)列出随机变量的概率分布表(或写出概率函数).

例2.2.1 从1~10这10个数字中随机取出5个数字,令 X:取出的5个数字中的最大值.试求X的分布律. 求分布率一定要说明 k 的取值范围! 解:X 的可能取值为 5,6,7,8,9,10. 并且 =—— 具体写出,即可得 X 的分布律:

例2.2.2 袋内有5个黑球3个白球,每次抽取一个不放回,直到取得黑球为止。记X为取到白球的数目,Y为抽取次数,求X、Y的概率分布及至少抽取3次的概率。 P(X=0)=5/8, P(X=1)=(3×5)/(8×7)=15/56,类似有 P(X=2)=(3×2×5)/(8 ×7 ×6)=5/56, P(X=3)=1/56, 所以,X的概率分布为 (2) Y的可能取值为1,2,3,4, P(Y=1)=5/8, P(Y=2)=P(X=1)=15/56,    类似有: P(Y=3)=P(X=2)=5/56,   P(Y=4)=P(X=3)=1/56, 所以Y的概率分布为: X 0 1 2 3 P 5/8 15/56 5/56 1/56 (3) P(Y≥3)=P(Y=3)+P(Y=4)=6/56

三、常见的离散型随机变量的概率分布 (1) 0 – 1 分布 X = xk 1 0 0 < p < 1 Pk p 1-p (1) 0 – 1 分布 X = xk 1 0 Pk p 1-p 0 < p < 1 凡是随机试验只有两个可能的结果, 应用场合 常用0 – 1分布描述,如产品是否格、人口性别统 计、系统是否正常、电力消耗是否超负荷等等. 注:其分布律可写成

(2) 离散型均匀分布 如在“掷骰子”的试验中,用 表示事件{出现 点}, 则随机变量 是均匀分布.

(3) 二项分布 背景:n 重Bernoulli 试验中,每次试验感兴 趣的事件A 在 n 次试验中发生的次数 —— X是一离散型随机变量 若P ( A ) = p , 则 称 X 服从参数为n, p 的二项分布(也叫Bernolli 分布).记作 0 – 1 分布是 n = 1 的二项分布.

二项分布的图形

例3.1.1 一大批产品的次品率为0.1,现从中取 出15件.试求下列事件的概率: B ={ 取出的15件产品中恰有2件次品 } C ={ 取出的15件产品中至少有2件次品 } 解: 由于从一大批产品中取15件产品,故可近似 看作是一15重Bernoulli试验. 所以,

例3.1.2 一个完全不懂英语的人去参加英语考试. 假设此考试有5个选择题,每题有n重选择,其中只 有一个答案正确.试求:他居然能答对3题以上而及 格的概率. 解:由于此人完全是瞎懵,所以每一题,每一个答案 对于他来说都是一样的,而且他是否正确回答各题 也是相互独立的.这样,他答题的过程就是一个 Bernoulli试验 .

(4) Poisson 分布 或 若 其中 是常数,则称 X 服从参数为 或 的Poisson 分布,记作 在一定时间间隔内: 应用场合: 在一定时间间隔内: 电话总机接到的电话次数; 一匹布上的疵点个数; 大卖场的顾客数;

市级医院急诊病人数; 一个容器中的细菌数; 某一地区发生的交通事故的次数; 放射性物质发出的粒子数; 一本书中每页印刷错误的个数; 等等.

例3.1.3 设随机变量X 服从参数为λ的Poisson分布, 且已知 解:随机变量 X 的分布律为 由已知

例3.1.4 如果随机变量X 的分布律为 试确定未知常数c . 解: 由分布率的性质有

(5) 几何分布 设用机枪射击一次击落飞机的概率为 ,无限次地射击,则首次击落飞机时所需射击的次数 服从参数为 的几 何分布,记 .即 设用机枪射击一次击落飞机的概率为 ,无限次地射击,则首次击落飞机时所需射击的次数 服从参数为 的几 何分布,记 .即 容易验证,若在前 m 次射击中未击落飞机,那么,在 此条件下,为了等到击落时刻所需要等待时间也服 从同一几何分布,该分布与 m 无关,这就是所谓的 无记忆性.

(6) 超几何分布 设有产品 件,其中正品 件,次品 件( ) ,从中随机地不放回抽取 件, ,记X为抽到的 的正品件数,求X 的分布律. 设有产品 件,其中正品 件,次品 件( ) ,从中随机地不放回抽取 件, ,记X为抽到的 的正品件数,求X 的分布律. 此时抽到 件正品的概率为 k=0,1,… , 称X 服从超几何分布.记 可以证明超几何分布的极限分布就是二项分布,因此在实际应用中,当 都很大时,超几何分布可用下面式子近似

(7) 负二项分布(Pascal分布) (自学) (8) 截塔(Zipf)分布 (自学)

课堂练习 1. 将一枚均匀骰子抛掷3次,令X 表示3次中 出现“4”点的次数 求X的概率函数 提示:

2. 设生男孩的概率为p,生女孩的概率为 q=1-p,令X表示随机抽查出生的4个婴儿中“男孩”的个数. 求X的概率分布.

解:X 表示随机抽查的4个婴儿中男孩的个数, 生男孩的概率为p. 男 女 X=0 X =1 X =2 X =3 X =4 X可取值0,1,2,3,4. X的概率函数是:

求 。 例3设 由于 是分段表 达的,求 时 注意分段求. 解 由定义