靶向制剂 Target-oriented Preparations

Slides:



Advertisements
Similar presentations
第二十一章 免疫缺陷病 (Immunodeficiency disease,IDD). 免疫缺陷病 (Immunodeficiency diseade,IDD) : 由免疫系统中任何一个成分在发生、发 育和成熟过程中的缺失或功能不全而导致免 疫功能障碍所引起的疾病。 免疫缺陷病分为 : 先天性 /
Advertisements

肾上腺素受体激动药 Adrenoceptor blocking drugs. 人体 β 1 - 肾上腺受体 受体 - 腺苷酸环化酶偶联和受体 - 磷 脂酶偶联示意图.
第四节 RNA 的空间结构与功能. RNA 的种类和功能 核糖体 RNA ( rRNA ):核蛋白体组成成分 转移 RNA ( tRNA ):转运氨基酸 信使 RNA ( mRNA ):蛋白质合成模板 不均一核 RNA ( hnRNA ):成熟 mRNA 的前体 小核 RNA ( snRNA ):
氨基酸转换反应 ( 一 ) 血液中转氨酶活力的测定 一. 目的 : 了解转氨酶在代谢过程中的重要作用及其在临 床诊断中的意义, 学习转氨酶活力测定的原理和方 法。 二. 原理 : 生物体内广泛存在的氨基转换酶也称转氨酶, 能 催化 α – 氨基酸的 α – 氨基与 α – 酮基互换, 在氨基酸 的合成和分解尿素和嘌呤的合成等中间代谢过程中.
植物生理 植物细胞生理基础 同工酶. 学习目标 Click to add title in here Click to add title n here  掌握同工酶的概念。  了解同工酶的意义。
上皮细胞生物学研究中心 成立以来开展的主要合作研究项目 日期 中国科学院 2002 合作单位 项目
影响药物吸收的生理因素.
第十二章 靶向制剂 Target-oriented Preparations
辽宁省精品资源共享课 药物化学 沈阳药科大学药物化学教研室.
国家级精品课 药物化学 沈阳药科大学药物化学教研室.
药物分析 pharmaceutical analysis
淋巴结转移癌 制作:刘重次 钱丽娟.
左乳腺癌术后的PDT治疗.
药 剂 学.
(targeted drug delivery system TDDS )
第十七章 缓释和控释制剂.
靶 向 制 剂 (targeted drug delivery system,TDDS)
第十四章 靶向制剂.
靶向制剂概述.
课程名称: 药 剂 学 主讲教师: 于 莲.
靶向制剂.
第五节 纳米粒与亚微粒.
葡萄糖 合成 肌糖元 第六节 人和动物体内三大营养物质的代谢 一、糖类代谢 1、来源:主要是淀粉,另有少量蔗糖、乳糖等。
PET-CT-SUVmax与鼻咽癌放疗过程中原发灶 径线变化的关系
五、作用于神经系统的受体拮抗剂 兴奋性氨基酸(EAA)受体拮抗剂 抑制性氨基酸受体受体拮抗剂 神经肽Y受体拮抗剂
白细胞分化抗原和粘附分子 08/13/96 上海第二医科大学免疫学教研室.
第五节 靶向制剂 教 学 目 标 知识 目标 能力 目标 1.掌握靶向制剂的基本概念和设计基础 2.学习靶向制剂的分类
智能纳米凝胶的合成及其生物医学应用 制作者:许传飞.
药 学 概 论 第六章 药 剂 学.
肿瘤靶向 药物控释 基于大分子的 Polymeric Tumor-Targeting Drug Controlled Release
中药药剂学 药学院中药药剂教研室.
1.还原糖 2.脂 肪 3.蛋白质 10叶绿素 4.质流动 5.分 裂 6.酶温度 7.酶- PH 8.酶效率 9.酶水解 11.分 离 12.复 原 13.取DNA.
病原:痘病毒属于痘病毒科、脊椎动物痘病毒亚科,该亚科现有8个属,各属成员对动物的致病作用有明显的差异,但它们构造差异不大。
植物和我们.
第十二章 淋巴细胞的抗原受体与辅助分子.
细胞核是遗传信息库.
寻找生命的螺旋 深圳市育才中学 黄俊芳.
第九章 液体制剂.
糖尿病流行病学.
第十五章 糖类化合物习题解答 1. (1) (2) (3) (4) (6) (5) CH2OH HOCH2 CH2OH HO H H HO
食物中主要营养成分的检验 上海市第二初级中学 王颖. 食物中主要营养成分的检验 上海市第二初级中学 王颖.
1、这个过程要经过哪几个阶段? 2、这个过程中有哪些细胞参与? 这些细胞分别行使什么样的功能? 3、抗体又是如何发挥作用的呢?
· 全球变暖 · 臭氧的破坏与保护 · 酸雨危害与防治
特异性免疫过程 临朐城关街道城关中学连华.
内科护理学实验 1 血糖的监测与护理 实验学时:4学时 实验类型:综合性.
                                                                                                                                                                
移植 Transplantation 戴朝六 中国医科大学第二临床学院外科.
Metabolic biomarker signature to differentiate pancreatic ductal adenocarcinoma from chronic pancreatitis Gut, 2017, Jan (IF=14.921) 汇报人:王宁 IMI CONFIDENTIAL.
第十四章 靶向制剂 主讲教师:易丹丹. 第十四章 靶向制剂 主讲教师:易丹丹 14.1 概述.
基准物质(p382,表1) 1. 组成与化学式相符(H2C2O4·2H2O、NaCl ); 2. 纯度>99.9%; 3. 稳定(Na2CO3、CaCO3、Na2C2O4等) 4. 参与反应时没有副反应.
第二节 免疫球蛋白的类型 双重特性: 抗体活性 免疫原性(抗原物质).
C语言程序设计 主讲教师:陆幼利.
过程自发变化的判据 能否用下列判据来判断? DU≤0 或 DH≤0 DS≥0.
第二章 细胞的基本功能 第一节 细胞膜的结构和物质转运功能 第二节 细胞的信号转导 第三节 细胞的电活动 第四节 肌细胞的收缩.
第三部分 补体及C反应蛋白测定 一、总补体活性的测定(溶血实验):
药物的跨膜转运.
超越自然还是带来毁灭 “人造生命”令全世界不安
Carbohydrate Metabolism
代谢组学技术及应用新策略简介 代谢组学平台 刘慧颖.
第四章 缺 氧 概念:组织得不到氧气,或不能充分 利用氧气时,组织的代谢、功 能,甚至形态结构都可能发生 异常变化,这一病理过程称为 缺氧。
光合作用的过程 主讲:尹冬静.
陕西省陕建二中 单 糖 授课人:庄 懿.
Pharmacology of Efferent nervous system
 第三篇 脉管学(angiology) 第一章 心血管系统(cardiovasculal system)  第一节 概述 一、心血管系统的组成 1、心(heart):二房、二室 2、动脉(artery):大、中、小。 3、静脉(vein) 4、毛细血管(capillary) 人体解剖学——浙江大学.
H基因库(重链基因连锁群): --- 第14号染色体 κ基因库(κ链基因连锁群): --- 第2号染色体 λ基因库(λ链基因连锁群):
第18 讲 配合物:晶体场理论.
第一章 总 论 学习单元二 药物的基本作用.
BAFF在活动性SLE患者T细胞中的表达:
细胞分裂 有丝分裂.
五.有丝分裂分离和重组 (一) 有丝分裂重组(mitotic recombination) 1936 Curt Stern 发现
Presentation transcript:

靶向制剂 Target-oriented Preparations

本章要求 掌握靶向制剂的基本概念 学习靶向制剂的分类 掌握脂质体的基本概念、原理与制备方法、质量标准,了解脂质体制剂的发展方向。 掌握微球、微囊、微粒、纳米粒、纳米球、纳米囊及乳剂、微乳的基本概念、原理与制备方法、质量标准,了解微粒给药系统的发展方向。 主动靶向和被动靶向的区别,各有何种靶向手段

Introduction 靶向给药系统 (target-oriented drug delivery system,简称TODDS)又称靶向制剂 是借助载体、配体或抗体将药物通过局部给药、胃肠道或全身血液循环而选择性地浓集于靶组织、靶器官、靶细胞或细胞内结构的制剂。

target-oriented drug delivery system 是二十世纪后期医药学领域的一个热门课题; 是一种安全高效的药物传递途径和技术; 是促进药物临床应用的关键,已取得了可喜的成果。

TODDS诞生于20世纪70年代,早期TODDS主要是针对癌症的治疗药物,

1995年美国靶向制剂的产值已达到数亿美元。 1984年日本成功研制出TODDS药物。 TODDS

我国于20世纪80年代开始TODDS的研究 TODDS 在脂质体的制备、稳定性、药效等方面有深入研究,而且在世界上首创了中草药脂质体并投产上市。 TODDS

我国TODDS的研究方向 药物-糖蛋白受体结合物 药物-抗体结合物 白蛋白微球 明胶微球 乙基纤维素微球 白蛋白纳米粒 聚乳酸纳米粒等

⑵ 第二级指到达器官或组织内的特定的细胞(如肿瘤细胞而 不是正常细胞,肝细胞而不是Kupffer细胞); 一、TODDS的分类 1. 从药物到达的部位,可分为三级: ⑴ 第一级指到达特定的器官或组织; ⑵ 第二级指到达器官或组织内的特定的细胞(如肿瘤细胞而 不是正常细胞,肝细胞而不是Kupffer细胞); ⑶ 第三级指到达靶细胞内的特定的细胞器。

2. 从靶向传递机理分类,大体可分为三类: ⑴被动靶向制剂; ⑵主动靶向制剂; ⑶物理化学靶向制剂。 TODDS

靶向制剂的设计 1 被动靶向 即自然靶向,药物以微粒给药系统为载体(microparticles drug delivery systems) 通过正常的生理过程运 送至肝、脾、肺等器官

靶向制剂的设计 PEG化 2 主动靶向 是指表面经修饰后的药物微粒给药系统,不被单核吞噬系统识别 其上连接有特殊的配体, 2 主动靶向 是指表面经修饰后的药物微粒给药系统,不被单核吞噬系统识别 其上连接有特殊的配体, 使其能够与靶细胞的受体结合; PEG化

Cell Micro- particles 主动靶向制剂与靶细胞受体的结合

凝聚素:能与细胞表面特殊糖蛋白、糖脂的寡糖结构结合的天然蛋白 麦胎凝集素(WGA):在小麦胚中分离得到的凝集素,对N-乙酰氨基(-D-)葡萄糖/唾液酸专一。每个分子由2个亚基组成,每个亚基含有4个结构域和2个糖结合位点。 主动靶向制剂与细胞膜受体的结合 凝集素最大的特点在于它们能识别糖蛋白和糖肽中,特别是细胞膜中复杂的碳水化合物结构,即细胞膜表面的碳脂化合物决定簇。一种凝集素具有对某一种特异性糖基专一性结合的能力,如刀豆素与α—D—吡喃糖基甘露糖(α—D—Mannopyranosy)结合;麦芽素与N—乙酰糖胺(N—acetyl glucosamine)结合。

靶向制剂的设计 3 物理化学靶向 是用某些物理化学方法 将药物传输到特定部位 而达到靶向; 磁 温度 pH

靶向制剂的载体 大分子连接物(macromolecular conjugates) liposomes polymeric nanoparticle Microparticles systems block copolymer micelle dendrimer(树突体)

大分子连接物 大分子连接物(macromolecular conjugates)是指药物与大分子载体共价连接。 常用的大分子载体包括合成聚合物及内源性蛋白如人血清白蛋白、单抗等。 药物与大分子载体的共价连接应能控制药物释放。

Macromolecular conjugates

Microparticles drug delievey systems 微粒给药系统为分子组装体,药物分子包裹在载体内,通常在微粒核心。 和大分子连接物相比,微粒给药系统可使药物与周围环境分离,保护药物避免酶的降解。 由于不需共价连接,因此一种药物载体可装载不同种类的药物,并且较大分子连接物有更高的载药量。

脂质体 脂质体(liposomes) 是将药物包封于 类脂质双分子层内 形成的微型泡囊。

聚合物纳米粒(polymeric nanoparticle) 由各种生物相容性聚合物(biocompatible polymers)制成, 粒径在10-1000 nm。 药物被包裹在载体膜内称为纳米囊, 药物分散在载体基质中称为纳米球。

嵌段共聚物胶团 (block copolymer micelle) 是球形、纳米化的两亲性 共聚物的超分子装载体, 粒径10-100 nm。 胶团中心可包裹疏水药物, 其亲水性外壳可使胶团分散于水中。

树突体 树突体(Dendrimer)是一类新兴的微粒给药系统,是合成的多分枝的单分散性大分子。 当其分子量增加到一定程度时可 形成球状,其中心空穴 可包裹药物,其外壳的多分枝 可作为主动靶向因子的连接点。

树突体 树突体外壳的多分枝部位可作为与药物分子共价连接的位点,这样,树突体还可作为大分子连接物应用。

分类介绍 ⑴被动靶向制剂; ⑵主动靶向制剂; ⑶物理化学靶向制剂。 TODDS

TODDS 分类介绍 (一)被动靶向制剂 是采用脂质、类脂质、蛋白质、生物材料等 作为载体材料,将药物包裹或嵌入其中 制成各种类型的、 可被不同器官(组织、细胞)阻留或摄取的 胶体或混悬微粒制剂。

(一)被动靶向制剂 TODDS 分类介绍 迄今,研究最多的被动靶向给药制剂是 Liposomes Micro- emulsions Microspheres Nanoparticles

药 物 载 体 靶 部 位 阿霉素 脂质体 肺癌及胰腺癌、乳腺癌、 直肠癌或多发性骨髓 淀粉微球 直肠和肝癌 聚甲基丙烯酸酯纳米球 肝细胞瘤 表1 临床的部分抗癌药被动靶向给药制剂及其载体 药 物 载 体 靶 部 位 阿霉素 脂质体 肺癌及胰腺癌、乳腺癌、 直肠癌或多发性骨髓 淀粉微球 直肠和肝癌 聚甲基丙烯酸酯纳米球 肝细胞瘤 平阳霉素 W/O乳剂 乳腺癌、颈部水囊瘤 脂质体 大脑神经蚀质瘤 顺 铂 白蛋白微球 肝肉瘤 氟尿嘧啶 EC微囊 上颚骨窦癌、鳞状癌肝癌 淀粉微球 肝癌 丝裂霉素 淀粉微球 直肠癌、肝癌 白蛋白微球 肝癌 EC微囊 乳腺癌,宫颈癌,胃癌、肝癌

被动靶向制剂经静脉注射后,在体内的分布首先取决于微粒的粒径大小。 TODDS 分类介绍 被动靶向制剂的体内靶向性 被动靶向制剂经静脉注射后,在体内的分布首先取决于微粒的粒径大小。 通常小于50nm的纳米囊与纳米球缓慢积集于骨髓; 小于7μm时一般被肝、脾中的巨噬细胞摄取; 大于7μm的微粒通常被肺的最小毛细血管床以机械滤过的方式截留,被单核白细胞摄取进入肺组织或肺气泡。

TODDS 分类介绍 被动靶向制剂的体内靶向性 除粒径外,微粒表面的性质 如 荷电性 疏水性 表面张力等 对药物的体内分布也起着重要作用。 如 荷电性 疏水性 表面张力等 对药物的体内分布也起着重要作用。 一般而言,表面带负电荷的微粒易被肝脏摄取; 表面带正电荷的微粒易被肺摄取。 TODDS 分类介绍

(二)主动靶向制剂 TODDS 分类介绍 主动靶向制剂包括: 是用修饰的药物载体作为“导弹”,将药物定向地运送到靶区浓集发挥药效的制剂。 Modified liposomes Modified micropaticles Modified nanoparticles 修饰的药物载体制剂 前体药物制剂

TODDS 分类介绍 修饰的药物载体制剂 修饰用配体 受体的配体; 单克隆抗体; 高分子物质(对某些化学物质敏感)

TODDS 分类介绍 粒径小于4μm的 被动靶向载药微粒表面 经受体的配体、 单克隆抗体或 其他化学物质修饰后, 能避免巨噬细胞的摄取而到达特定的靶部位

前体药物 (Prodrugs) TODDS 分类介绍 将药物修饰成前体药物, 也能通过在体内特定靶区 激活而发挥作用。

(三)物理化学靶向制剂 TODDS 分类介绍 采用某些物理和化学方法使靶向制剂在特定部位发挥药效的制剂。 物理化学靶向制剂包括 磁性靶向制剂 栓塞靶向制剂 热敏靶向制剂 pH敏感的靶向制剂

二、TODDS的作用特点 TODDS可提高药品的 患者顺从性 安全性 有效性 可靠性

二、TODDS的作用特点 TODDS可解决药物在其它制剂给药时可能遇到的问题: 药剂学方面的稳定性低或溶解度小; 生物药剂学方面的低吸收或生物学不稳定性(酶、pH值等); 药物动力学方面的半衰期短和分布面广而缺乏特异性; 临床方面的治疗指数低和存在解剖屏障或者细胞屏障等。 常规药物存在的问题:

二、TODDS的作用特点 为何靶向制剂 具有这些特点?

原因分析 二、TODDS的作用特点 大多数药物以常规的剂型给药后,通常被细胞、组织或器官摄取,自由地分布于体内,而不是定向分布于其药理学的受体。这主要是由于体内对药物存在巨大屏障。 口服给药要受到两种效应的影响,即胃肠道上皮细胞中酶系的降解、代谢及肝中各酶系的生物代谢。许多药物很大一部分因首过效应而代谢失活,如多肽、蛋白类药物、β-受体阻滞剂等。为获得良好的治疗效果,通常不得不将口服给药改为注射等其它途径给药。

原因分析 二、TODDS的作用特点 由于通过注射途径的非靶向药物可无特异性地分布在全身循环中,在到达靶部位之前,要经过同蛋白结合、排泄、代谢、分解等步骤。通常,只有少量药物才能达到靶组织、靶器官、靶细胞。 要提高靶区的药物浓度就必须提高全身循环系统的药物浓度,这就必须增加剂量但同时也增大了药物的毒副作用。特别是对于抗癌药物,在杀灭癌细胞的同时也杀灭大量正常细胞,因此毒副作用大,病人的顺从性也差。

二、TODDS的作用特点 因此,将药物制成TODDS,即: 能特异性的到达靶区提高药效降低毒副作用。 原因分析 二、TODDS的作用特点 因此,将药物制成TODDS,即: 能特异性的到达靶区提高药效降低毒副作用。 ★最突出的特点是能将治疗药物最大限度地运送到靶区,使治疗药物在靶区浓度超出传统制剂的数倍乃至数百倍,治疗效果明显提高。 ★其次,由于药物的正常组织分布量较传统制剂减少,所以药物的毒副作用和不良反应会明显减轻,达到高效低毒的治疗效果。

★ TODDS多为微粒物。由于人体内物理和生理作用能将这些微粒分散体系有选择地聚集于肝、脾、淋巴等部位,因此微粒载体不仅能保护药物免遭破坏,而且能将所载药品集中传送到这些部位释放而发挥疗效。

理想的TODDS应具备 定位浓集 靶向作用 控制释药 载体无毒且可生物降解 安全可靠 缓释效果

三、靶向制剂的质量评价 1. 相对摄取率(re ) 2. 靶向效率 (te ) 3. 峰浓度比 (Ce ) 靶向给药系统的靶向性可由以下三个参数评价: 1. 相对摄取率(re ) 2. 靶向效率 (te ) 3. 峰浓度比 (Ce )

1.相对摄取率(re) re=(AUCi)p/(AUCi)s 式中:AUCi是由浓度-时间曲线求得的第i个器官或组织的药时曲线下面积,脚标p和s分别表示药物制剂及药物溶液。 re大于1表示药物制剂在该器官或组织有靶向性,re愈大靶向效果愈好,等于或小于1表示无靶向性。

2.靶向效率(te) te= (AUC)靶/(AUC)非靶 式中:te值表示药物制剂或药物溶液对靶器官的选择性。 te值大于1表示药物制剂对靶器官比某非靶器官有选择性;te值愈大,选择性愈强; 药物制剂te值与药物溶液的te值相比,说明药物制剂靶向性增强的倍数。

3.峰浓度比(Ce) Ce=(Cmax)p/(Cmax)s 式中:Cmax为峰浓度,每个组织或器官中的Ce值表明药物制剂改变药物分布的效果 Ce值愈大,表明改变药物分布的效果愈明显。

四、靶向制剂的发展趋势 TODDS是本世纪后期医药学领域的一个热门领域。 TODDS

四、靶向制剂的发展趋势 2、基因治疗(gene therapy)是近年来发展起来的一种补充人体缺失基因或关闭异常基因的新疗法,对于恶性肿瘤、先天性遗传病、艾滋病、糖尿病及心血管疾病等的治疗具有重大价值。 研究携带治疗基因片段或杂合体重组DNA质粒,保持其不被核酸酶降解,顺利地转导入人体靶位的载体将是21世纪初靶向给药制剂研究领域的重要课题。 TODDS

TODDS 目前: ★:TODDS正在由器官水平向细胞水平和分子水平发展; ★:由微粒给药制剂向靶向前体药物发展; ★:由基础研究和应用基础研究向应用开发研究发展。 TODDS

目前: 如肝靶向纳米粒、单克隆抗体介导前体药物、脑靶向前体药物、肾靶向前体药物、肝靶向前体药物和肺靶向前体药物的功能、靶向机理和体内分布代谢的研究正日益增多。 在不久的将来,靶向药物转运系统一定会在世界上大部分国家内广泛应用并占主导地位。 TODDS