§4.3 多重共线性 Multi-Collinearity.

Slides:



Advertisements
Similar presentations
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
Advertisements

2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
非线性时间序列模型 一般非线性时间序列模型介绍 条件异方差模型 上海财经大学 统计与管理学院.
第6章 多重共线性的情形及其处理 6 .1 多重共线性产生的背景和原因 6 .2 多重共线性对回归模型的影响 6 .3 多重共线性的诊断
第十章 相关与回归分析 PowerPoint 统计学.
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
一、能线性化的多元非线性回归 二、多元多项式回归(线性化)
一、二阶行列式的引入 用消元法解二元线性方程组. 一、二阶行列式的引入 用消元法解二元线性方程组.
计量经济学习题课 詹 鹏 南京财经大学数量经济学2010级.
第四章 回归假设的二级检验: 计量经济学检验
第三章 函数逼近 — 最佳平方逼近.
10.2 立方根.
第六章 多重共线性 (Multi-Collinearity)
第四章 经典单方程计量经济学模型:放宽基本假定的模型
Multicollinearity 一、多重共线性的概念 二、多重共线性的后果 三、多重共线性的检验 四、克服多重共线性的方法 五、例题
第一章 行列式 第五节 Cramer定理 设含有n 个未知量的n个方程构成的线性方程组为 (Ⅰ) 由未知数的系数组成的n阶行列式
第二章 经典单方程计量经济学模型: 一元线性回归模型
量化视角下的豆粕投资机会分析 格林期货研发培训中心 郭坤龙.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
计量经济学 第三章 多元线性回归模型.
Applied Regression Analysis
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
§3.3 多元线性回归模型的统计检验 一、拟合优度检验 二、方程的显著性检验(F检验) 三、变量的显著性检验(t检验) 四、参数的置信区间.
计量经济学 第四章 多重共线性.
引子: 国内生产总值增加会减少财政收入吗?
计量经济学 第三章 多元线性回归模型.
第二章 回归模型 法、参数的普通最小二乘估计式及相关性质、对模型的经济意 义检验和统计检验,能应用Eviews软件进行最小二乘估计与统
第2章 一元线性回归 2 .1 一元线性回归模型 2 .2 参数 的估计 2 .3 最小二乘估计的性质 2 .4 回归方程的显著性检验
第2章 一元线性回归分析 §2.1 :回归分析及回归模型 §2.2 :一元线性模型的参数估计 §2.3 :参数估计值的性质及统计推断
计算机数学基础 主讲老师: 邓辉文.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
多元回归分析:估计 y = b0 + b1x1 + b2x bkxk + u 计量经济学导论 刘愿.
第十章 方差分析.
若2002年我国国民生产总值为 亿元,如果 ,那么经过多少年国民生产总值 每年平均增长 是2002年时的2倍? 解:设经过 年国民生产总值为2002年时的2倍, 根据题意有 , 即.
第四章 多重共线性.
第4章 非线性规划 4.5 约束最优化方法 2019/4/6 山东大学 软件学院.
第一章 函数与极限.
习题 一、概率论 1.已知随机事件A,B,C满足 在下列三种情况下,计算 (1)A,B,C相互独立 (2)A,B独立,A,C互不相容
抽样和抽样分布 基本计算 Sampling & Sampling distribution
Partial Differential Equations §2 Separation of variables
9.1 简单线性相关分析 9.2 一元线性回归分析 9.3 多元线性回归与复相关分析 9.4 变量间非线性关系的回归
3.8.1 代数法计算终点误差 终点误差公式和终点误差图及其应用 3.8 酸碱滴定的终点误差
模型分类问题 Presented by 刘婷婷 苏琬琳.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
第六章 自相关.
§4.2 序列相关性 Serial Correlation.
复习.
第六章 多重共线性 一、多重共线性的概念 二、实际经济问题中的多重共线性 三、多重共线性的后果 四、多重共线性的检验
§8.3 不变因子 一、行列式因子 二、不变因子.
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
相关与回归 非确定关系 在宏观上存在关系,但并未精确到可以用函数关系来表达。青少年身高与年龄,体重与体表面积 非确定关系:
第四章 多元线性回归分析.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
线 性 代 数 厦门大学线性代数教学组 2019年5月12日4时19分 / 45.
§5.2 抽样分布   确定统计量的分布——抽样分布,是数理统计的基本问题之一.采用求随机向量的函数的分布的方法可得到抽样分布.由于样本容量一般不止2或 3(甚至还可能是随机的),故计算往往很复杂,有时还需要特殊技巧或特殊工具.   由于正态总体是最常见的总体,故本节介绍的几个抽样分布均对正态总体而言.
概率论与数理统计B.
第三节 随机区组设计的方差分析 随机区组设计资料的总平方和可以分解为三项: (10.10).
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
Volterra-Lotka方程 1925年, A. Lotka(美)和V. Volterra(意)给出了第一个两物种间的捕食模型。
数学模型实验课(二) 最小二乘法与直线拟合.
§4.5 最大公因式的矩阵求法( Ⅱ ).
第三章 线性方程组 §4 n维向量及其线性相关性(续7)
§2 自由代数 定义19.7:设X是集合,G是一个T-代数,为X到G的函数,若对每个T-代数A和X到A的函数,都存在唯一的G到A的同态映射,使得=,则称G(更严格的说是(G,))是生成集X上的自由T-代数。X中的元素称为生成元。 A变, 变 变, 也变 对给定的 和A,是唯一的.
Presentation transcript:

§4.3 多重共线性 Multi-Collinearity

一、多重共线性的概念 二、实际经济问题中的多重共线性 三、多重共线性的后果 四、多重共线性的检验 五、克服多重共线性的方法 六、案例 §4.3 多重共线性 一、多重共线性的概念 二、实际经济问题中的多重共线性 三、多重共线性的后果 四、多重共线性的检验 五、克服多重共线性的方法 六、案例 *七、分部回归与多重共线性

一、多重共线性的概念 对于模型 Yi=0+1X1i+2X2i++kXki+i i=1,2,…,n 其基本假设之一是解释变量是互相独立的。 如果某两个或多个解释变量之间出现了相关性,则称为多重共线性(Multicollinearity)。

如果存在 如果存在 c1X1i+c2X2i+…+ckXki=0 i=1,2,…,n 其中: ci不全为0,则称为解释变量间存在完全共线性(perfect multicollinearity)。 如果存在 c1X1i+c2X2i+…+ckXki+vi=0 i=1,2,…,n 其中ci不全为0,vi为随机误差项,则称为 近似共线性(approximate multicollinearity)或交互相关(intercorrelated)。

在矩阵表示的线性回归模型 Y=X+ 中,完全共线性指:秩(X)<k+1,即 中,至少有一列向量可由其他列向量(不包括第一列)线性表出。 如:X2= X1,则X2对Y的作用可由X1代替。

注意: 完全共线性的情况并不多见,一般出现的是在一定程度上的共线性,即近似共线性。

一般地,产生多重共线性的主要原因有以下三个方面: (1)经济变量相关的共同趋势 二、实际经济问题中的多重共线性 一般地,产生多重共线性的主要原因有以下三个方面: (1)经济变量相关的共同趋势 时间序列样本:经济繁荣时期,各基本经济变量(收入、消费、投资、价格)都趋于增长;衰退时期,又同时趋于下降。 横截面数据:生产函数中,资本投入与劳动力投入往往出现高度相关情况,大企业二者都大,小企业都小。

(2)滞后变量的引入 在经济计量模型中,往往需要引入滞后经济变量来反映真实的经济关系。 例如,消费=f(当期收入, 前期收入) 显然,两期收入间有较强的线性相关性。

(3)样本资料的限制 由于完全符合理论模型所要求的样本数据较难收集,特定样本可能存在某种程度的多重共线性。 一般经验: 时间序列数据样本:简单线性模型,往往存在多重共线性。 截面数据样本:问题不那么严重,但多重共线性仍然是存在的。

1、完全共线性下参数估计量不存在 二、多重共线性的后果 的OLS估计量为: 如果存在完全共线性,则(X’X)-1不存在,无法得到参数的估计量。

例:对离差形式的二元回归模型 如果两个解释变量完全相关,如x2= x1,则 这时,只能确定综合参数1+2的估计值:

近似共线性下,可以得到OLS参数估计量, 但参数估计量方差的表达式为 由于|X’X|0,引起(X’X) -1主对角线元素较大,使参数估计值的方差增大,OLS参数估计量非有效。

仍以二元线性模型 y=1x1+2x2+ 为例: 恰为X1与X2的线性相关系数的平方r2 由于 r2 1,故 1/(1- r2 )1

当完全不共线时, r2 =0 当近似共线时, 0< r2 <1 多重共线性使参数估计值的方差增大,1/(1-r2)为方差膨胀因子(Variance Inflation Factor, VIF) 当完全共线时, r2=1,

如果模型中两个解释变量具有线性相关性,例如 X2= X1 , 3、参数估计量经济含义不合理 如果模型中两个解释变量具有线性相关性,例如 X2= X1 , 这时,X1和X2前的参数1、2并不反映各自与被解释变量之间的结构关系,而是反映它们对被解释变量的共同影响。 1、2已经失去了应有的经济含义,于是经常表现出似乎反常的现象:例如1本来应该是正的,结果恰是负的。

4、变量的显著性检验失去意义 存在多重共线性时 参数估计值的方差与标准差变大 容易使通过样本计算的t值小于临界值, 误导作出参数为0的推断 可能将重要的解释变量排除在模型之外

5、模型的预测功能失效 变大的方差容易使区间预测的“区间”变大,使预测失去意义。

注意: 除非是完全共线性,多重共线性并不意味着任何基本假设的违背; 因此,即使出现较高程度的多重共线性,OLS估计量仍具有线性性等良好的统计性质。 问题在于,即使OLS法仍是最好的估计方法,它却不是“完美的”,尤其是在统计推断上无法给出真正有用的信息。

三、多重共线性的检验 多重共线性检验的任务是: 多重共线性表现为解释变量之间具有相关关系,所以用于多重共线性的检验方法主要是统计方法:如判定系数检验法、逐步回归检验法等。 多重共线性检验的任务是: (1)检验多重共线性是否存在; (2)估计多重共线性的范围,即判断哪些变量之间存在共线性。

(1)对两个解释变量的模型,采用简单相关系数法 1、检验多重共线性是否存在 (1)对两个解释变量的模型,采用简单相关系数法 求出X1与X2的简单相关系数r,若|r|接近1,则说明两变量存在较强的多重共线性。 (2)对多个解释变量的模型,采用综合统计检验法 若 在OLS法下:R2与F值较大,但t检验值较小,说明各解释变量对Y的联合线性作用显著,但各解释变量间存在共线性而使得它们对Y的独立作用不能分辨,故t检验不显著。

如果存在多重共线性,需进一步确定究竟由哪些变量引起。 2、判明存在多重共线性的范围 如果存在多重共线性,需进一步确定究竟由哪些变量引起。 (1) 判定系数检验法 使模型中每一个解释变量分别以其余解释变量为解释变量进行回归,并计算相应的拟合优度。 如果某一种回归 Xji=1X1i+2X2i+LXLi 的判定系数较大,说明Xj与其他X间存在共线性。

式中:Rj•2为第j个解释变量对其他解释变量的回归方程的决定系数, 具体可进一步对上述回归方程作F检验: 构造如下F统计量 式中:Rj•2为第j个解释变量对其他解释变量的回归方程的决定系数, 若存在较强的共线性,则Rj•2较大且接近于1,这时(1- Rj•2 )较小,从而Fj的值较大。 因此,给定显著性水平,计算F值,并与相应的临界值比较,来判定是否存在相关性。

在模型中排除某一个解释变量Xj,估计模型; 另一等价的检验是: 在模型中排除某一个解释变量Xj,估计模型; 如果拟合优度与包含Xj时十分接近,则说明Xj与其它解释变量之间存在共线性。

以Y为被解释变量,逐个引入解释变量,构成回归模型,进行模型估计。 (2)逐步回归法 以Y为被解释变量,逐个引入解释变量,构成回归模型,进行模型估计。 根据拟合优度的变化决定新引入的变量是否独立。 如果拟合优度变化显著,则说明新引入的变量是一个独立解释变量; 如果拟合优度变化很不显著,则说明新引入的变量与其它变量之间存在共线性关系。

如果模型被检验证明存在多重共线性,则需要发展新的方法估计模型,最常用的方法有三类。 四、克服多重共线性的方法 如果模型被检验证明存在多重共线性,则需要发展新的方法估计模型,最常用的方法有三类。 1、第一类方法:排除引起共线性的变量 找出引起多重共线性的解释变量,将它排除出去。 以逐步回归法得到最广泛的应用。 注意: 这时,剩余解释变量参数的经济含义和数值都发生了变化。

时间序列数据、线性模型:将原模型变换为差分模型: Yi=1  X1i+2  X2i++k  Xki+  i 2、第二类方法:差分法 时间序列数据、线性模型:将原模型变换为差分模型: Yi=1  X1i+2  X2i++k  Xki+  i 可以有效地消除原模型中的多重共线性。 一般讲,增量之间的线性关系远比总量之间的线性关系弱得多。

例 如:

由表中的比值可以直观地看到,增量的线性关系弱于总量之间的线性关系。 进一步分析: Y与C(-1)之间的判定系数为0.9988, △Y与△C(-1)之间的判定系数为0.9567

3、第三类方法:减小参数估计量的方差 多重共线性的主要后果是参数估计量具有较大的方差,所以 采取适当方法减小参数估计量的方差,虽然没有消除模型中的多重共线性,但确能消除多重共线性造成的后果。 例如: ①增加样本容量,可使参数估计量的方差减小。

*②岭回归法(Ridge Regression) 70年代发展的岭回归法,以引入偏误为代价减小参数估计量的方差,受到人们的重视。 具体方法是:引入矩阵D,使参数估计量为 (*) 其中矩阵D一般选择为主对角阵,即 D=aI a为大于0的常数。 显然,与未含D的参数B的估计量相比,(*)式的估计量有较小的方差。

根据理论和经验分析,影响粮食生产(Y)的主要因素有: 六、案例——中国粮食生产函数 根据理论和经验分析,影响粮食生产(Y)的主要因素有: 农业化肥施用量(X1);粮食播种面积(X2) 成灾面积(X3); 农业机械总动力(X4); 农业劳动力(X5) 已知中国粮食生产的相关数据,建立中国粮食生产函数: Y=0+1 X1 +2 X2 +3 X3 +4 X4 +4 X5 +

1、用OLS法估计上述模型: R2接近于1; 给定=5%,得F临界值 F0.05(5,12)=3.11 (-0.91) (8.39) (3.32) (-2.81) (-1.45) (-0.14) R2接近于1; 给定=5%,得F临界值 F0.05(5,12)=3.11 F=638.4 > 15.19, 故认上述粮食生产的总体线性关系显著成立。 但X4 、X5 的参数未通过t检验,且符号不正确,故解释变量间可能存在多重共线性。

2、检验简单相关系数 列出X1,X2,X3,X4,X5的相关系数矩阵: 发现: X1与X4间存在高度相关性。

3、找出最简单的回归形式 分别作Y与X1,X2,X4,X5间的回归: 可见,应选第1个式子为初始的回归模型。 (25.58) (11.49) (25.58) (11.49) R2=0.8919 F=132.1 DW=1.56 (-0.49) (1.14) R2=0.075 F=1.30 DW=0.12 (17.45) (6.68) R2=0.7527 F=48.7 DW=1.11 (-1.04) (2.66) R2=0.3064 F=7.07 DW=0.36 可见,应选第1个式子为初始的回归模型。

4、逐步回归 将其他解释变量分别导入上述初始回归模型,寻找最佳回归方程。

5、结论 回归方程以Y=f(X1,X2,X3)为最优:

*七、分部回归与多重共线性

1、分部回归法(Partitioned Regression) 对于模型 将解释变量分为两部分,对应的参数也分为两部分: 在满足解释变量与随机误差项不相关的情况下,可以写出关于参数估计量的方程组:

如果存在 则有 这就是仅以X1作为解释变量时的参数估计量 同样有 这就是仅以X2作为解释变量时的参数估计量。

2、由分部回归法导出 如果一个多元线性模型的解释变量之间完全正交,可以将该多元模型分为多个一元模型、二元模型、…进行估计,参数估计结果不变; 实际模型由于存在或轻或重的共线性,如果将它们分为多个一元模型、二元模型、…进行估计,参数估计结果将发生变化;

当模型存在共线性,将某个共线性变量去掉,剩余变量的参数估计结果将发生变化,而且经济含义有发生变化; 严格地说,实际模型由于总存在一定程度的共线性,所以每个参数估计量并不 真正反映对应变量与被解释变量之间的结构关系。