§1 线性空间的定义与性质 ★线性空间的定义 ★线性空间的性质 ★线性空间的子空间 线性空间是线性代数的高等部分,是代数学

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

第一节 不定积分的概念及其 计算法概述 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质及简单计算 四、小结.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
数值分析 第二章 矩阵分析基础 第一节 线性空间 第二节 赋范线性空间 第三节 内积空间 第四节 矩阵代数基础 第五节 矩阵的三角分解 第六节 矩阵的正交分解 第七节 矩阵的奇异值分解.
线 性 空 间 线性空间的定义 线性空间 的子空间 小结. 线性空间是线性代数最基本的概念之一,也是 一个抽象的概念,它是向量空间概念 线性空间是线性代数最基本的概念之一,也是 一个抽象的概念,它是向量空间概念的推广. 线性空间是为了解决实际问题而引入的,它是 某一类事物从量的方面的一个抽象,即把实际问题看作向量空间,进而通过研究向量空间来解决实际问题.
§1. 预备知识:向量的内积 ★向量的内积的概念 ★向量的长度 ★向量的正交性 ★向量空间的正交规范基的概念 ★向量组的正交规范化
第12讲 向量空间,齐次线性方程组的结构解 主要内容: 1. 向量空间 (1) 向量空间的定义 (2) 向量空间的基
第四章 向量组的线性相关性 §1 向量组及其线性组合 §2 向量组的线性相关性 §3 向量组的秩 §4 线性方程组的解的结构.
向量空间与线性变换 在数学大厦中的重要地位
第6章 向量空间 6.1 向量空间的定义和例子 6.2 子空间 6.3 向量的线性相关 6.4 基和维数 6.5 坐 标
第二节 线性空间的定义与简单性质 主要内容 引入 定义 线性空间的简单性质.
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
§1 二阶与三阶行列式 ★二元线性方程组与二阶行列式 ★三阶行列式
*第七节 二元高次方程组 主要内容 两个一元多项式有非常数公因式的条件 二元高次方程组的一个一般解法.
一、二阶行列式的引入 用消元法解二元线性方程组. 一、二阶行列式的引入 用消元法解二元线性方程组.
第一章 行列式 第五节 Cramer定理 设含有n 个未知量的n个方程构成的线性方程组为 (Ⅰ) 由未知数的系数组成的n阶行列式
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
§ 7.1 线性空间的概念 我们考察数域P上全体m×n矩阵的集合Mn,n(P)和数域P上全体n维向量集合(即n维向量空间)Pn, 可以看出,这两个集合中元素的加法与数域P中数与集合元素之间的数量乘 法都有十分相似的运算性质.如果它们抽象出来,就得出一般线性空间的概念.
定积分习题课.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
2-7、函数的微分 教学要求 教学要点.
第二章 矩阵(matrix) 第8次课.
线性代数机算与应用 李仁先 2018/11/24.
3.7叠加定理 回顾:网孔法 = 解的形式:.
计算机数学基础 主讲老师: 邓辉文.
第四章 向量组的线性相关性.
复旦大学通信科学与工程系 光华楼东主楼1109 Tel:
第四节 线性方程组解的结构 前面我们已经用初等变换的方法讨论了线性方程组的解法, 并建立了两个重要定理: 第四节 线性方程组解的结构 前面我们已经用初等变换的方法讨论了线性方程组的解法, 并建立了两个重要定理: (1) n个未知数的齐次线性方程组Ax.
第一章 函数与极限.
线性代数 第二章 矩阵 §1 矩阵的定义 定义:m×n个数排成的数表 3) 零矩阵: 4) n阶方阵:An=[aij]n×n
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
特 征 值 与 特 征 向 量 一、特征值与特征向量的概念 二、特征值和特征向量的性质.
复习.
第十章 双线性型 Bilinear Form 厦门大学数学科学学院 网址: gdjpkc.xmu.edu.cn
第三章 线性空间 Linear Space.
第16讲 相似矩阵与方阵的对角化 主要内容: 1.相似矩阵 2. 方阵的对角化.
§8.3 不变因子 一、行列式因子 二、不变因子.
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
微课作品介绍.
第13讲 非齐次线性方程组的结构解, 线性空间与线性变换
1.2 子集、补集、全集习题课.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
线性代数 第十一讲 分块矩阵.
2.2矩阵的代数运算.
上杭二中 曾庆华 上杭二中 曾庆华 上杭二中 曾庆华.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
线 性 代 数 厦门大学线性代数教学组 2019年5月12日4时19分 / 45.
第三章 空间向量与立体几何 3.1 空间向量及其运算 3.1.2空间向量的数乘运算.
2019/5/20 第三节 高阶导数 1.
《离散结构》 二元运算性质的判断 西安工程大学计算机科学学院 王爱丽.
§2 方阵的特征值与特征向量.
6.2 线性变换的运算 授课题目:6.2 线性变换的运算 授课时数:2学时 教学目标:掌握线性变换的三种运算及
9.5空间向量及其运算 2.共线向量与共面向量 淮北矿业集团公司中学 纪迎春.
定义5 把矩阵 A 的行换成同序数的列得到的矩阵,
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
§5 向量空间.
6.5 可对角化的矩阵 授课题目:6.5 可对角化的矩阵 授课时数:6学时 教学目标:掌握矩阵对角化的定义与方法 教学重点:矩阵对角化的方法
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
教学大纲(甲型,54学时 ) 教学大纲(乙型, 36学时 )
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
高等代数课件 陇南师范高等专科学校数学系 2008年制作.
§4.5 最大公因式的矩阵求法( Ⅱ ).
第三章 线性方程组 §4 n维向量及其线性相关性(续7)
§2 自由代数 定义19.7:设X是集合,G是一个T-代数,为X到G的函数,若对每个T-代数A和X到A的函数,都存在唯一的G到A的同态映射,使得=,则称G(更严格的说是(G,))是生成集X上的自由T-代数。X中的元素称为生成元。 A变, 变 变, 也变 对给定的 和A,是唯一的.
第七章 线性空间与线性变换 §1 线性空间定义与性质
Presentation transcript:

§1 线性空间的定义与性质 ★线性空间的定义 ★线性空间的性质 ★线性空间的子空间 线性空间是线性代数的高等部分,是代数学 §1 线性空间的定义与性质 ★线性空间的定义 ★线性空间的性质 ★线性空间的子空间 线性空间是线性代数的高等部分,是代数学 进一步讨论的基础,什么是线性空间?为什 么称它为线性空间? 下页 关闭

线性空间的定义 定义1 设V是一个非空集合,R为实数域,如果 总有唯一的一个元素 对于任意两个元素 与之对应,称为 总有唯一的一个元素 并且这两 种运算满足以下八条运算规律 上页 下页 返回

上页 下页 返回

凡满足八条规律的加法及数乘运算,就称为线性运算;凡定义了线性运算的集合,就称为向量空间。 这里向量的概念比起第四章中向量的概念,有了很大的推广: 1. 向量不一定是有序数组; 2. 向量空间中的运算只要求满足八条运算规律,当然也就不一定是有序数组的加法及数乘运算。 上页 下页 返回

对于通常的多项式加法、多项式乘数的乘法构成向量空间。 例1 对于通常的多项式加法、多项式乘数的乘法构成向量空间。 这是因为:通常的多项式加法、数乘多项式的乘法两种运算显然满足线性运算规律。 上页 下页 返回

对于通常的多项式加法和数乘运算不构成向量空间。 例2 对于通常的多项式加法和数乘运算不构成向量空间。 上页 下页 返回

举例说明例2中的Q [ x ]n 对通常的多项式的加法运算不封闭。 Ex.1 举例说明例2中的Q [ x ]n 对通常的多项式的加法运算不封闭。 解 上页 下页 返回

例3 上页 下页 返回

注意: 上页 下页 返回

例4 证 实际上要验证十条: 上页 下页 返回

上页 下页 返回

线性空间的性质 1. 零元素是唯一的。 证 证毕。 上页 下页 返回

2. 任一元素的负元素是唯一的。 证 证毕。 上页 下页 返回

证 上页 下页 返回

证 上页 下页 返回

线性空间的子空间 定义2 设V 是一个线性空间,L 是 V 的一个非空子集,如果 L 对于 V 中所定义的加法和乘数两种运算也构成线性空间,则称 L为 V 的子空间。 一个非空子集要满足什么条件才能构成子空间? 上页 下页 返回

定理1 线性空间 V 的非空子集 L 构成子空间的充分必要条件是:L 对于 V 中的线性运算封闭。 例5 在 n 维向量空间 R n 中,齐次线性方程组 的全部解向量组成一个子空间V 。 这是因为:若 则由齐次线性方程组 的性质知 即 V 对加法及数乘运算封 闭,从而 V 是 R n 的子空间。 上页 返回