第十八章 制剂新技术 第一节 固体分散技术 第四篇 制剂新技术与药物新剂型 一、概述 二、常用载体材料 三、固体分散体的类型

Slides:



Advertisements
Similar presentations
胎儿窘迫 重点内容 ①定义; ②病因; ③病理生理; ④诊断依据; ⑤处理原则。. 一、定义:胎儿在宫内缺氧危及胎儿健康和生命者称胎儿窘迫, 多发在临产后,也可见于妊娠晚期。 二、病因:母体血氧含量不足。 1) 导致胎儿缺氧的母体因素有 ①微小动脉供血不足:如妊高征等 ②红细胞携氧量不足:如重度贫血、一氧化碳中毒等;
Advertisements

妊娠高血压 综合征. 目的要求 1. 掌握妊高征的概述 临床表现及 分类 护理措施 2. 了解妊高征的病因 病理 3. 熟悉妊高征的处理原则.
酒店绩效考核攻略 一 业务流程再造 管理环节突破 利润急速倍增 专为您企业量身裁衣服务 突破导师 : 周忠亭副教授 北京大学管理案例研究 中心特聘餐饮讲师 北洋战略研究院研究员 北大时代光华高级讲师 中国十大餐饮管理讲师 中华酒店管理专家教授 教育部首批中国餐饮经理人 师资成员.
“ 十五 ” 国家级规划教材 新世纪全国高等中医院校规划教材 中 医 妇 科 学 总 论 主讲人 李朝平.
人力资源工作总结 行政部 人力资源部年度工作 一方面通过招聘管理、劳动合同管理、 入离职管理等,确保各项人事管理工作 的合法性、规范性. 另一方面通过建立员工培训计划,加强 企业文化的贯彻和渗透,提升员工的凝 聚力和归属感,提升员工的敬业度。
配樂:夢的序曲 ( 鋼琴 ) 雁蕩山因山頂有湖,蘆葦茂密,結草為湯,南歸秋雁多宿於此,故名雁蕩。始於 南北朝,興於唐,盛於宋,雁蕩山來晚了一步,未能在 “ 五岳 ” 中占得一席之地。 沒有金碧輝煌的涂飾,村野之山的雁蕩倒因此多了份瀟灑風神。
“ 你不仅要关心自己的盘子装的是什么食物,而 且更要关心每种食物的最佳进食时间! ” 这是英 国剑桥大学营养专家提出的最新健康饮食法则! 这是因为,食物也有自己的 “ 生物钟 ” , 只有遵 从它,你才能吃得更健康和苗条! 如果去吃自助餐,你会怎么做呢?先吃鱼肉大 菜,吃到差不多再吃蔬菜、主食,然后喝汤、
“ 你不僅要關心自己的盤子裝的是什麼食物,而 且更要關心每種食物的最佳進食時間! ” 這是英 國劍橋大學營養專家提出的最新健康飲食法則! 這是因為,食物也有自己的 “ 生物鐘 ” , 只有遵 從它,你才能吃得更健康和苗條! 如果去吃自助餐,你會怎麼做呢?先吃魚肉大 菜,吃到差不多再吃蔬菜、主食,然後喝湯、
1. 法律學系助教群: 大學部助教 徐碧霜 行政助教 葉靜芳 研究所助教 阮博謙 台中 法政學院 1. 台北 法商學院 民國 50 年 中興大學合併法商學院法律系 民國 89 年 法商學院改制為台北大學.
五年級上學期的自然課,當我們上到水溶液單元時,老師指導我們石蕊試紙可以測試水溶液的酸鹼性,藍色石蕊試紙遇鹼性 水溶液不變色,遇酸性水溶液時變紅色;而紅色石蕊試紙遇鹼性水溶液變藍色,遇酸性水溶液時不變色。 可是,滴入醋水溶液的藍色石蕊試紙變紅色的部分竟然消失不見了,紅色石蕊試紙應該不變色卻出現藍紫色,怎麼會這樣呢?
茶叶基本知识 徐南眉. 中国是茶树的原产地,中国古代劳动人民 最早发现了茶、利用了茶,世界上其他国 家是从中国引入了茶树和制茶、饮茶的方 法,茶是中国古代劳动人民奉献给世界人 民的健康饮料。茶从最初的药用到饮用, 从煎煮饮用到现代沏茶品茶经历了漫长的 历史发展过程。在世界的东方,茶不但是 饮料,还包含着丰富的精神文化内容。
防腐剂、矫味剂、着色剂. 同学们仔细看看双黄连口服液、甘草合剂等液体制剂说明 书中【成分】一项包括那些? 2 .大家想想芬达葡萄糖汽水配料中都有什么? 说明书中是不是经常会看到蔗糖、糖精钠、 苯甲酸钠、柠檬黄、羟苯乙酯等物质的出 现。这些东西到底是起什么作用的了?大 部分液体药剂的溶剂多用水,以水为溶剂.
第十六章 制剂新技术.
第一节 职业基础知识 第二节 社会需要剖析 第三节 用人单位认知
固体制剂-Ⅰ(散剂、颗粒剂、片剂、片剂的包衣)
第四章 固体制剂.
化學期末報告–人體的酸鹼平衡 工作分配: 組別:第5組 班級:自控一甲 組長:4A012134羅振元
改名台南大學實地訪視簡報
第三章 固体制剂. 第三章 固体制剂 第一节 概 述 片剂──→崩解(裂碎成小颗粒)──→药物从小颗粒中溶出──→ 胃肠液中的药物溶液──→药物从胃肠粘膜吸收进入血液循环──→ 第一节 概 述 片剂──→崩解(裂碎成小颗粒)──→药物从小颗粒中溶出──→ 胃肠液中的药物溶液──→药物从胃肠粘膜吸收进入血液循环──→
药剂学 任课教师 倪京满.
《化学与生活》鲁科版 朱古力豆 我们需要 食品添加剂吗?.
近年来,出现了一些制作粗糙、违背史实甚至常理的“抗战雷剧”,社会上也出现了一股“戏说”抗战剧的不良风气。
第二十章 药物制剂新技术 第一节 环糊精包合技术
妇产科 主讲教师:张佳.
固体分散体、包合物和微型胶囊 Solid dispersion、Inclusion complexes and Microcapsules.
《疯 娘》 --100个人看后99个人会落泪的故事 图文:网络
食品中可能存在的影响人体健康的有毒有害因素称为危害。 危害按其性质划分为生物性危害、化学性危害和物理性危害。
浪漫 碰撞 蜕变 专题八 19世纪以来的文学艺术.
德国波恩明斯特广场修建的贝多芬铜像( 1845年)
卫生计生监督协管工作中如何发现安全隐患与违法行为线索
2015届就业指导课程教学大纲介绍.
柠檬汁 让你健康又美丽 四(3) 赵起震.
腸道傳染病宣導講座 南港區健康服務中心 林治萱護理師.
证券交易模拟 第2讲 交易规则与盘面术语.
水 与 生命.
時間:102年9月18日(星期三) 地點:國立臺灣師範大學綜合大樓509國際會議廳
新疆医科大学药学院 药剂学 药剂物化教研室.
知识竞赛 欢迎同学们参与低碳生活知识竞赛 指导教师:丹赵路中学 王同有.
主題 : 飲食安全 主講人:護士黃淑美 ..
大道至简:自主学习拿高分 丽水市教育教学研究院 朱德飞.
第四章 固体制剂-1习题 第一部分 散剂 颗粒剂.
口服定时给药系统.
第十一章:思路与谋篇 教学内容: 1、思路及有关概念; 2、谋篇(结构)的原则; 3、谋篇的方法(层次段落安排, 过度与照应,开头与结尾).
中考试题的 基础性、科学性与规范性 刘文川
第六节 片剂的包衣 定义 包衣的目的 包衣的基本类型 ① 糖包衣 ② 薄膜包衣 ③ 压制包衣 在片剂表面包以适宜材料的过程称包衣。
药用植物活性成分提取与分析 复习提纲.
第四章 猪饲料配制技术 主要介绍猪场常用饲料的营养特点及使用时注意事项,不同生长发育阶段猪营养需要,浓缩料和复合预混料配方的制造方法等,其目的是提高饲料转化率、降低饲料成本。
预防龋齿 从我做起.
揭秘 庄家 股市中的 为什么你的股票一买就跌,一卖就涨? 为什么出了利好,股价反而下跌? 为什么有的股票一直涨停?
第二节 进入工作状态与稳定工作状态 一、进入工作状态 概念:在进行体育运动时,人的机能能力逐渐提高的生理过程和机能状态叫进入工作状态。
固体分散体与滴丸 Solid dispersions and pills
固体分散技术 兰州大学药剂教研室 主讲老师:孟庆刚
2012年度人力资源部工作总结
网络游戏对大学生生活的影响 英本1班 鞠申镅 汪晨茹 沈秋云 元文杰 段祺琪.
食物中毒及预防.
义务教育化学课程标准 新版介绍 李开祥.
专题二十 细胞工程、胚胎工程和生态工程 核心考点精析 命题热点解读 专题质量检测. 专题二十 细胞工程、胚胎工程和生态工程 核心考点精析 命题热点解读 专题质量检测.
执行《劳动合同法》中 应当注意的十大问题.
前言 大量使用能源雖提升人類的物質文明,卻也造成了始料未及的禍害---酸雨。 右圖所見是亞洲地區的酸雨量, 可想而知全世界的酸雨量是多麼的嚴重,所以我們希望藉著這份報告,加強人們保護地球的意識,藉此減少酸雨的危害,令人們不會再被酸雨威脅。
第二节 干制原料的涨发工艺 一、干制原料涨发的概念 二、干制原料涨发的工艺流程 三、干制原料的涨发方法 四、干制原料涨发的基本要求.
温故知新 1、凸透镜成像的规律有哪些? 2、照相机成像的原理是什么?.
乳猪断奶后拉稀,掉膘与教槽料.
模块四 固体制剂. 模块四 固体制剂 模块四 固体制剂 专题一 散剂制剂技术 专题二 颗粒剂制剂技术 专题三 胶囊剂制剂技术 专题四 片剂制剂技术 专题五 片剂的包衣.
狂賀!妝品系同學美容乙級通過 妝品系三甲 學號 姓名 AB 陳柔諺 AB 陳思妤 AB 張蔡婷安
执业药师之路—— 有我陪你 在线自习室 主讲:董老师.
習作2-2 題目+解答 第一關 西亞、中亞的自然與人文環境 圖一  歐洲分區簡圖      請依據圖一中的標示,將正確代號填入空格中。   
相似三角形 青铜峡市第六中学: 李 成.
义务教育课程标准(2011版) 省级研训报告会 《化学课程标准》解读 主讲人: 崔敏 陕西省教育厅.
——Differential Thermal Analysis
96 教育部專案補助計畫案明細 單位 系所 教育部補助款 學校配合款 工作໨目 計畫主 持人 備註 設備費 業務費 579,000
Presentation transcript:

第十八章 制剂新技术 第一节 固体分散技术 第四篇 制剂新技术与药物新剂型 一、概述 二、常用载体材料 三、固体分散体的类型 第四篇 制剂新技术与药物新剂型 第十八章 制剂新技术 第一节 固体分散技术 一、概述 二、常用载体材料 三、固体分散体的类型 四、常用的固体分散技术 五、固体分散体的物相鉴别 六、固体分散体速释与缓释的原理

第一节 固体分散技术 一、概述 固体分散体(solid dispersion)系指药物以分子、胶态、微晶等状态均匀分散在某一固态载体物质中所形成的分散体系。 将药物制成固体分散体所采用的制剂技术称为固体分散技术。

制成固体分散体的目的: 固体分散体的缺点: 增加难溶性药物的溶解度和溶出速率; 控制药物释放; 掩盖药物的不良嗅味和刺激性; 使液体药物固体化; 利用载体的包蔽作用,可延缓药物的水解和氧化增加药物的稳定性。 固体分散体的缺点: 药物处于高度分散状态,久贮易产生老化现象(稳定性不高)。

二、载体材料 (一)水溶性载体材料 固体分散体所用的载体材料可分为:水溶性载体材料、难溶性载体材料、肠溶性载体材料三大类。 1. 聚乙二醇类 2. 聚维酮类 3.表面活性剂类 4.有机酸类 5.糖类与醇类 6.其它亲水性材料

1.聚乙二醇类 聚乙二醇(PEG)是最常用的水溶性载体之一,是一大类结晶性高分子聚合物的总称。最适合用于固体分散体的分子量在1000到20000,熔点较低(55~65℃),毒性小。化学性质稳定(但180℃以上分解),能与多种药物配伍。不干扰药物的含量分析。 药物为油类时,宜用分子量更高的PEG类作载体。单用PEG6000作载体,则固体分散体变软,特别是温度较高时载体发粘。

2. 聚维酮类 聚维酮(PVP)为无定形高分子聚合物、无毒、易溶于水和多种有机溶剂。由于熔点较高,不宜采用熔融法,而宜采用溶剂法制备固体分散物。 但PVP易吸湿,制成的固体分散物对湿的稳定性差,贮存过程中易吸湿而析出药物结晶。如尼莫地平—PVP固体分散物[7]能显著提高尼莫地平的体外溶出速率,但经相对湿度75%,40℃放置三个月后,溶出速率又回到原药的水平。

3.表面活性剂类 作为载体材料的表面活性剂大多含聚氧乙烯基,是较理想的速效载体材料。其特点是溶于水或有机溶剂、载药量大、在蒸发过程中可阻滞药物产生结晶。 最为常用的表面活性剂是泊洛沙姆188(poloxamer188),为片状固体、毒性小、对粘膜刺激性极小、可采用熔融法和溶剂法制备固体分散体,可大大提高药物的溶出速率和生物利用度。

4.有机酸类 常用的有枸橼酸、琥珀酸、酒石酸、胆酸、去氧胆酸等。 此类载体材料的分子量较小,易溶于水而不溶于有机溶剂。 金陵之夜

5.糖类与醇类 糖类有右旋糖酐、半乳糖和蔗糖等,醇类有甘露醇、山梨醇、木糖醇等。 它们的特点是水溶性强、毒性小,因分子中有多个羟基,可与药物以氢键结合生成固体分散体,适用于剂量小、熔点高的药物,尤以甘露醇为最佳。

6.其它亲水性材料 一些常用的固体制剂优良辅料,如改性淀粉、微晶纤维素、淀粉、低粘度HPMC、胃溶性聚丙烯酸树脂以及微粉硅胶等也可用作固体分散体的载体。 它们具有良好的亲水性,除起到药物的分散作用外,本身还是优良的润湿剂、分散剂、助流剂或崩解剂。 此类固体分散体可采用溶剂分散法制备。

(二)难溶性载体材料 1.纤维素类 2.聚丙烯酸树脂类 3.脂质类

1.纤维素类 常用的是乙基纤维素(EC),它只能溶于乙醇、苯、丙酮、CCl4等有机溶剂、无毒、无药理活性,是一种理想的不溶性载体材料。多采用溶剂分散法制备(乙醇为溶剂)缓释的固体分散体: EC的用量和粘度对药物的释放速率均有影响,尤其是EC的用量影响更大;药物释放的机理是扩散控制。 加入HPC、PEG、PVP等水溶性物质作致孔剂可以调节释药速率,获得更为理想的缓控释效果。

2.聚丙烯酸树脂类 主要为为含季铵基的聚丙烯酸树脂(商品名:Eudragit,包括RL和RS等几种型号)。 此类产品在肠液中不溶,在胃液中可溶胀,广泛用于制备缓释固体分散体的材料。 也可在此类固体分散体中加入PEG或PVP等可调节释药速率。

3.脂质类 脂质类材料(如胆固醇、β-谷甾醇、棕榈酸甘油酯、胆固醇硬脂酸酯、巴西棕榈蜡等)也可作为载体制备缓释的固体分散体。应采用熔融法制备。 这些脂质类载体可降低药物的释放速率达到缓释的目的。也可加入PVP、表面活性剂、糖类等水溶性材料,以调节释放速率,达到满意的缓释效果。

(三)肠溶性载体材料 1.纤维素类 2.聚丙烯酸树脂类 长安街夜色

1.纤维素类 常用的有醋酸纤维素酞酸酯(CAP)、羟丙甲纤维素酞酸酯(HPMCP,其商品有两种规格,分别为HP50、HP55)以及羧甲乙纤维素(CMEC)等,它们不溶于胃液,但均能溶于肠液中。 可用于制备胃中不稳定药物的固体分散体,使其只在肠道中释放和吸收,使制剂获得较高的疗效(即生物利用度较高)。 也可于制备缓释的固体分散体,控制药物的释放,使制剂获得缓释的效果。

2.聚丙烯酸树脂类 常用聚丙烯酸树脂Ⅱ号及Ⅲ号,前者在pH6以上的介质中溶解,后者在pH7以上的介质中溶解,有时两者联合使用,可制成缓释速率较理想的固体分散体。 布洛芬以Eudragit L-100及 Eudragit S-100共沉淀物中5hr释药50%, 8h释药近于完全。

三、固体分散体的类型 (-)固体溶液(solid solution) 是指药物以分子状态均匀分散在载体材料中而形成的固体分散体。如果将药物分子看成溶质,载体看成是溶剂,则此类分散体即可称为固体(态)溶液。 因为固体溶液中的药物以分子状态存在,分散程度高、表面积大,所以在改善溶解度方面比下述的低共熔混合物具有更好的效果。

按晶体结构看,可分为置换型和填充型固体溶液;按药物与载体材料的互溶情况看,可分为完全互溶和部分互溶固体溶液。 如果药物与载体的分子大小很接近,则一种分子可以代替另一种分子进入其晶格结构形成置换型固体溶液,这种固体溶液往往在两者不同组分比例下都能形成,故而又称完全互溶固体溶液; 但如果药物与载体的分子大小差异较大,则一种分子只能填充进入另一种分子晶格结构的空隙中形成填充型固体溶液,这种固体溶液只在特定的组分比例下形成,故而又称为部分互溶固体溶液。

(二)简单低共溶混合物(eutectic mixture) 药物与载体以适当的比例配合,并在较低的温度下熔融,可得到完全混溶的液体(液态的固体溶液),将其速冷至最低共熔点(温度)下,药物一般将以微晶形式均匀分散在固体载体中。 为了最大程度的获得这种均匀分散的微晶体系,关于药物与载体的用量比例,一般采用最低共熔组分比(最低共熔点时药物与载体之比),此时,两组分在最低共熔温度下同时从熔融态转变成微晶态(体系),称为最低共熔混合物。

相Ⅱ表示A的微晶与A在B中的饱和溶液(熔融态)共存; 图中A、B分别为A和B的熔点; 相Ⅰ为A和B的熔融态; 相Ⅱ表示A的微晶与A在B中的饱和溶液(熔融态)共存; 相Ⅲ表示B的微晶与B在A中的饱和溶液(熔融态)共存; 相Ⅳ为固态低共熔混合物(O线为A和B共同处于熔融状态时的最低温度, E点为A和B处于最低共熔点时的比例)。  图18-1 简单低共熔混合物的相图 温度T B A I:熔融态 Ⅱ Ⅲ E O Ⅳ 随着B的比例,A的熔化点曲线沿着AE线下降到E点

如果两组分的配比不是最低共熔组分比,则在某一温度下,先行析出的某一成分的微晶就会在另一种成分的熔融体中自由生长成较大的结晶。 当温度进一步降低到低共熔温度时(O线),此时产生的低共熔晶体就会填入先析出的晶体结构空隙中,使总体的微晶表面积大大减小,影响增溶效果。

(三)共沉淀物 共沉淀物也称共蒸发物、沉淀物 , 是由药物与载体材料二者以一定比例形成的非结晶性无定形物。如磺胺噻唑(ST)与PVP(1:2)共沉淀物中,ST分子进入PVP分子的网状骨架中,药物结晶受到PVP的抑制而形成非结晶性无定形物。

四、常用的固体分散技术 (一)熔融法 (二)溶剂法 (三)溶剂熔融法 (四)研磨法 (五)液相中溶剂扩散法

(一)熔融法 将药物与载体材料混匀,加热至熔融(也可将载体加热熔融后,再加入药物混匀),然后将熔融物在不断搅拌下迅速冷却成固体(例如将熔融物倾倒在冰冷的不锈钢板上成薄膜状,使熔融物骤冷成固体),然后将其干燥使变脆而易于粉碎,进一步制成片剂、胶囊等。 本法简便、经济,适用于对热稳定的药物,多采用低熔点的或不溶于有机溶剂的载体材料,如PEG类、poloxamer、枸橼酸、糖类等,但不耐热的药物和载体不宜用此法,以免分解、氧化。一般来说,此法制得的固体分散体中的药物有较高度的分散状态。 对易受热分解、升华及多晶型转换的药物,可采用减压熔融或充惰性气体的方法。也可将熔融物滴入冷凝液中使之迅速收缩、凝固成丸,这样制成的固体分散体称为滴丸。常用冷凝液有液体石蜡、植物油、甲基硅油以及水等。

(二)溶剂法 将药物溶于有机溶剂中,根据载体能否溶于此溶剂,可将此法分为共沉淀法和溶剂分散法二种。 共沉淀法是指将药物与载体材料共同溶解于有机溶剂中,蒸去有机溶剂后使药物与载体材料同时析出、干燥即得。蒸发溶剂时,宜先用较高温度蒸发溶剂至溶液变粘稠时,突然冷冻固化;也可将药物和载体溶于溶剂中,然后喷雾干燥或冷冻干燥,除尽溶剂即得。该法主要适用于熔点较高的或不够稳定的药物和载体的固体分散体的制备。本法制备的固体分散体,分散性好,但使用有机溶剂,且用量较多,有时难于除尽,成本也较高。 溶剂分散法是指药物溶于有机溶剂中,将不溶于此溶剂的载体材料分散于其中,与药物混匀,蒸去有机溶剂、干燥即得(也可采用喷雾干燥或冷冻干燥去除有机溶剂)。此法不用选择药物和载体的共同溶剂,只需选择能溶解药物的溶剂即可。

(三)溶剂熔融法 将药物用适当的溶剂溶解后,与熔融的载体混合均匀,蒸去有机溶剂,冷却固化而得。本法可适用于液态药物,如鱼肝油、维生素A、D、E等。但只适用于剂量小于50mg的药物。凡适用熔融法的载体材料均可采用。制备过程一般除去溶剂的受热时间短,产物稳定,质量好。但注意选用毒性小的溶剂,与载体材料应易混合。通常药物先溶于溶剂再与熔融载体材料混合,必须搅拌均匀,防止固相析出。

(四)研磨法 是将药物与较大比例的载体材料混合后,强力持久地研磨一定时间,形成固体分散体的方法。本法不需加溶剂,而是借助机械力降低药物的粒度,或使药物与载体材料以氢键相结合。研磨时间的长短因药物而异。常用的载体材料有微晶纤维素、乳糖、PVP类、PEG类等。

(五)液相中溶剂扩散法 液相中溶剂扩散法是直接制备难溶性药物固体分散体微丸的新技术。 本法将固体分散技术与球晶造粒技术有机地结合在一起,使药物和固体分散载体在液相中共沉,并在液体架桥剂的作用下聚结、在搅拌作用下形成微丸。以上制备过程简单、一次完成,收率高、重现性好、微丸圆整好。 液相中晶析造粒法(简称球晶造粒技术),详见16章第三节。

五、固体分散体的物相鉴别 固体分散体中的药物分散状态:分子状态、亚稳定态、无定形态、胶体状态、微晶状态。 可选择以下方法进行物相鉴别,必要时可同时采用几种方法进行鉴别:

(一)溶解度及溶出速率测定法 将药物制成固体分散体后,其溶解度和溶出速率有较大变化。 例如:当双炔失碳酯(AD)与PVP的重量为比1:8时,形成了共沉淀物,其20分钟时的溶出度比原药约大38倍。

(二)热分析法 差热分析法(differential thermal analysis, DTA)是在程序升温(或降温)的相同环境中,测量试样和参比物两者的温度差随温度(或时间)的变化情况。 差示扫描量热法(differential scanning calorimetery,DSC)又称为差动分析,是使试样和参比物在程序升温或降温的相同环境中,用补偿器测量使两者温度差保持为零时所必须的热流量对温度(或时间)的依赖关系。

(三)X射线衍射法 通过比较药物、载体、药物—载体物理混合物和固体分散体的X-射线衍射图谱,可以判断固体分散体是否形成(确切了解药物的结晶性质及结晶度大小)。 物理混合物的衍射图谱是上述各组分衍射图谱的简单叠加,衍射峰位置及强度无改变。但在固体分散体中药物以无定形状态存在,药物的结晶衍射峰将消失。

(四)红外光谱法 红外光谱法主要用于确定固体分散体中有无复合物形成或其它相互作用。在形成复合物或有强氢键作用时,则药物和载体的某些吸收峰将消失或位移。 (五)核磁共振谱法 本法主要用于确定固体分散体中有无分子间或分子内的相互作用。

六、固体分散体速释与缓释的原理 (一)速释原理 1.药物所处的状态使溶出加快 (1)药物的分散度(表面积)显著增加 在固体分散体中,药物所处的分散状态是加快药物溶出速率的重要因素。主要有以下两个方面: (1)药物的分散度(表面积)显著增加 固体分散体内的药物呈极细的胶体、微晶或超细微粒,甚至以分子状态存在,这些不仅大大提高了药物的表面积S,而且根据Ostwald frendulich定律也可以提高溶解度CS,因此必然提高药物的溶出速率,达到速释的效果(dC/dt=KSCS )。

2.载体材料对药物溶出的促进作用 (2)药物处于高能状态 在固体分散物中,药物以无定型或亚稳态的晶型存在,处于高能状态,它们的扩散能量很高,所以溶出速度快、可以达到速释的效果。 2.载体材料对药物溶出的促进作用 (1)载体材料可提高药物的润湿性: (2)载体材料可以保证药物的高度分散性: (3)载体材料对药物有抑晶性。

(二)缓释原理 用水不溶性聚合物、肠溶性材料、脂质材料为载体制备的固体分散体,不仅仅具有提高药物的溶解能力的作用,而且具有使药物缓慢释放作用,其释药机制与骨架型制剂缓、控释原理相同。 水溶性药物及难溶性药物均可用固体分散技术制备缓释固体分散体。选择适当的载体及恰当的药物与载体的比例,可获得理想释药速率的固体分散体。