第十一章 药物制剂的稳定性.

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
药物制剂的稳定性 Stability of Pharmaceutical Preparation
减慢食物变质的速度 减慢食物变质的速度.
药品认证质量管理工作中 留样观察及稳定性试验
模块四 药品陈列与保管 专业模块 项目七 药品分类陈列
影响药物吸收的生理因素.
第十二章 药物制剂的稳定性 药剂/物化教研室.
维生素A结构和性质、鉴别试验.
电导法测定乙酸乙酯皂化反应的速率常数 ——Rate Constant for the Saponification of Ethyl Acetate by a Conductometric Method 化学系基础实验中心.
3.5.2 过氧化物交联 缩合交联的优点: 缩合交联的缺点: 如何来制备高强度的硅橡胶? 如:管材,垫圈。 基胶流动性好;易于封装,密封。
碘量法应用与实例:维生素C含量测定.
药 物 分 析 实 验 实验三 典型化学药的特殊杂质 和相关物质检查.
第九章 液体制剂.
第一章 行列式 第五节 Cramer定理 设含有n 个未知量的n个方程构成的线性方程组为 (Ⅰ) 由未知数的系数组成的n阶行列式
第九章 液体制剂.
第3章 化学动力学基础.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第一章 商品 第一节 价值创造 第二节 价值量 第三节 价值函数及其性质 第四节 商品经济的基本矛盾与利己利他经济人假设.
由中心离子和单齿配位体(如 NH3, Cl-, F-等)形成,分级络合
Presenter: 宫曦雯 Partner: 彭佳君 Instructor:姚老师
ACD/ChemSketch软件在有机化学教学中的简单应用
龙湾中学 李晓勇 学习目标: 能写出单一溶液、混合溶液中的质子守恒关系式。
第三节 Gas Transport in the blood 气体在血液中的运输
化学品清单 类型.
Synthetic Chemical Experiment
第8章 静电场 图为1930年E.O.劳伦斯制成的世界上第一台回旋加速器.
基准物质(p382,表1) 1. 组成与化学式相符(H2C2O4·2H2O、NaCl ); 2. 纯度>99.9%; 3. 稳定(Na2CO3、CaCO3、Na2C2O4等) 4. 参与反应时没有副反应.
强酸(碱)溶液 一元弱酸(碱)溶液 多元弱酸(碱)溶液 两性物质 混合酸碱溶液 各种体系[H+]浓度的计算
过程自发变化的判据 能否用下列判据来判断? DU≤0 或 DH≤0 DS≥0.
复分解法制备硝酸钾.
3.8.1 代数法计算终点误差 终点误差公式和终点误差图及其应用 3.8 酸碱滴定的终点误差
实验 二、配合平衡的移动 Cu 2+ + NH3 Cu(NH3)4 HCl Na2S Zn EDTA NH3 深蓝色消失
重点化学方程式复习 Cl2+2NaOH=NaCl+NaClO+H2O Cl2+2OH-=Cl-+ClO-+H2O
利用DSC评价生物降解塑料的结晶特性 测 量 案 例 概 要 a a b c b c c’ c’ 2013.01
药物的跨膜转运.
问1:四大基本反应类型有哪些?定义? 问2:你能分别举两例吗? 问3:你能说说四大基本反应中,反应物和生成物的物质类别吗?
超越自然还是带来毁灭 “人造生命”令全世界不安
Home Work 现代科学中的化学键能及其广泛应用 罗渝然(Yu-Ran Luo)
第12章 化学汽相沉积( CVD) 化学气相沉积(Chemical Vapor Deposition, CVD)是通过气相物质的化学反应在基材表面上沉积固态薄膜的一种工艺方法。 CVD的基本步骤与PVD不同的是:沉积粒子来源于化合物的气相分解反应。 CVD的实现必须提供气化反应物,这些物质在室温下可以是气态、液态或固态,通过加热等方式使它们气化后导入反应室。
你有过呕吐的经历吗? 你感到胃液是什么味道的?
激光器的速率方程.
第十一章 配合物结构 §11.1 配合物的空间构型 §11.2 配合物的化学键理论.
第四章 缺 氧 概念:组织得不到氧气,或不能充分 利用氧气时,组织的代谢、功 能,甚至形态结构都可能发生 异常变化,这一病理过程称为 缺氧。
第15章 量子力学(quantum mechanics) 初步
Synthetic Chemical Experiment
光合作用的过程 主讲:尹冬静.
离子反应.
溶质质量分数的计算 嘉兴市秀洲现代实验学校 沈丹英.
第五节 缓冲溶液pH值的计算 两种物质的性质 浓度 pH值 共轭酸碱对间的质子传递平衡 可用通式表示如下: HB+H2O ⇌ H3O++B-
物理化学 复旦大学化学系 范康年教授 等 2019/5/9.
氧化还原反应.
一 测定气体分子速率分布的实验 实验装置 金属蒸汽 显示屏 狭缝 接抽气泵.
第18 讲 配合物:晶体场理论.
海报题目 简介: 介绍此项仿真工作的目标和需要解决的问题。 可以添加合适的图片。
利用DSC进行比热容的测定 比 热 容 测 量 案 例 2010.02 TA No.036 热分析・粘弹性测量定 ・何为比热容
化学反应速率与活化能的测定.
Astrid Schödel 全球质量管理总监
温州中学选修课程《有机化学知识拓展》 酯化反应 温州中学 曾小巍.
过氧化氢含量的测定.
FH实验中电子能量分布的测定 乐永康,陈亮 2008年10月7日.
本底对汞原子第一激发能测量的影响 钱振宇
实验八 化学反应速率和活化能 v = k ·cm (S2O82-)·cn(I-) 实验原理: 在水溶液中S2O82-与I-发生如下反应:
《偏微分方程》第一章 绪论 第一章 绪论 1.1.
第三节 水溶液的酸碱性及pH计算 一、水的质子自递反应 水的质子自递反应: 水分子是一种两性物质,它既可 给出质子,又可接受质子。于是在水
实验十八 图谱解析实验 根据谱图,推定未知苯系物的结构
海报题目 简介: 介绍此项仿真工作的目标和需要解决的问题。 可以添加合适的图片。
Presentation transcript:

第十一章 药物制剂的稳定性

内 容 提 要 药物制剂的稳定性包括化学稳定性、物理稳定性、生物活性稳定性、疗效稳定性、毒性稳定性五种稳定性。 本章只限药物的化学稳定性,尤其对易水解、易氧化、易互变、易聚合的药物进行重点讨论。包括化学降解途径、化学动力学基础、影响降解的因素与稳定化措施、预测稳定性的方法,为药物制剂的稳定性研究奠定理论基础。

第一节 概 述 一、研究药物制剂稳定性的意义 药物制剂的基本要求应该是安全、有效、稳定。稳定系指药物在体外的稳定性。药物若分解变质,不仅可使疗效降低,有些药物甚至产生毒副作用,故药物制剂稳定性对保证制剂安全有效是非常重要的。

二、研究药物制剂稳定性的任务 药物制剂稳定性一般包括化学、物理和生物学三个方面。 化学稳定性是指药物由于水解、氧化等化学降解反应,使药物含量(或效价)、色泽产生变化。 物理稳定性方面,如混悬剂中药物颗粒结块、结晶生长,乳剂的分层、破裂,胶体制剂的老化,片剂崩解度、溶出速度的改变等,主要是制剂的物理性能发生变化。

生物学稳定性一般指药物制剂由于受微生物的污染,而使产品变质、腐败。 研究药物制剂稳定性的任务,就是探讨影响药物制剂稳定性的因素与提高制剂稳定化的措施,同时研究药物制剂稳定性的试验方法,制订药物产品的有效期,保证药物产品的质量,为新产品提供稳定性依据。

第二节 药物稳定性的化学动力学基础 20世纪50年代初期Higuchi等用化学动力学的原理来评价药物的稳定性。化学动力学在物理化学中已作了详细论述,此处只将与药物制剂稳定性有关的某些内容,简要的加以介绍。

一、反应级数 研究药物降解的速率,首先遇到的问题是浓度对反应速率的影响。 反应级数是用来阐明反应物浓度与反应速率之间的关系。 反应级数有零级、一级、伪一级及二级反应;此外还有分数级反应。 在药物制剂的各类降解反应中,尽管有些药物的降解反应机制十分复杂,但多数药物及其制剂可按零级、一级、伪一级反应处理。

(一)零级反应 凡反应速率与反应物浓度无关,而受其它因素影响的反应,称为零级反应,其它因素如反应物的溶解度,或某些光化反应中光的照度等。零级反应的微分速率方程为

(二)一级反应 凡反应速率与反应物浓度的一次方成正比的反应称为一级反应,其微分速率方程为

通常将反应物消耗一半所需的时间为半衰期(half life),记作t1/2,恒温时,t1/2与反应物浓度无关。

对于药物降解,常用降解10%所需的时间,称十分之一衰期,记作t0.9,恒温时,t0.9也与反应物浓度无关。 如果反应速率与两种反应物浓度的乘积成正比的反应,称为二级反应。

二、温度对反应速率的影响与药物稳定性预测 一)阿仑尼乌斯(Arrhenius)方程。 大多数反应温度对反应速率的影响比浓度更为显著,温度升高时,绝大多数化学反应速率增大。Arrhenius根据大量的实验数据,提出了速率常数与温度之间的关系式,即著名的Arrhenius经验公式

式中, A——频率因子;E——为活化能;R——为气体常数。上式取对数形式为 (11-5) 式中, A——频率因子;E——为活化能;R——为气体常数。上式取对数形式为 lg k= +lgA或 lg (11-6)

(二)药物稳定性预测 药物稳定性预测有多种方法,但基本的方法仍是经典恒温法,根据Arrhenius方程以lg k对1/T作图得一直线,此图称Arrhenius图,直线斜率=-E/(2.303R),由此可计算出活化能E。 若将直线外推至室温,就可求出室温时的速度常数(k25)。由k25可求出分解10%所需的时间(即t0.9)或室温贮藏若干时间以后残余的药物的浓度。

第三节 制剂中药物化学降解途径 药物由于化学结构的不同,其降解反应也不一样,水解和氧化是药物降解二个主要途径。其他如异构化、聚合、脱羧等反应,在某些药物中也有发生。有时一种药物还可能同时产生两种或两种以上的反应。

一、水解 水解是药物降解的主要途径,属于这类降解的药物主要有酯类(包括内酯)、酰胺类(包括内酰胺)等。 (一)酯类药物的水解 含有酯键药物的水溶液,盐酸普鲁卡因的水解可作为这类药物的代表,水解生成对氨基苯甲酸与二乙胺基乙醇,此分解产物无明显的麻醉作用。内酯与酯一样,在碱性条件下易水解开环。硝酸毛果芸香碱、华法林钠均有内酯结构,可以产生水解。

(二)酰胺类药物的水解 酰胺类药物水解以后生成酸与胺。属这类的药物有氯霉素、青霉素类、头孢菌素类、巴比妥类等药物。此外如利多卡因、对乙酰氨基酚(扑热息痛)等也属此类药物。 氯霉素在水中的分解主要是酰胺水解,生成氨基物与二氯乙酸。

(三)其它药物的水解 阿糖胞苷在酸性溶液中,脱氨水解为阿糖脲苷。在碱性溶液中,嘧啶环破裂,水解速度加快。 另外,如维生素B、地西泮、碘苷等药物的降解,主要也是水解作用。

二、氧化 氧化也是药物变质最常见的反应。失去电子为氧化。在有机化学中常把脱氢称氧化。药物氧化分解常是自动氧化。即在大气中氧的影响下进行缓慢的氧化过程。自氧化反应常为游离的链式反应,如以RH代表药物,一般链反应分以下三步:

氧化过程一般都比较复杂,有时一个药物,氧化、光化分解、水解等过程同时存在。 药物的氧化作用与化学结构有关,许多酚类、烯醇类、芳胺类、吡唑酮类、噻嗪类药物较易氧化。药物氧化后,不仅效价损失,而且可能产生颜色或沉淀。有些药物即使被氧化极少量,亦会色泽变深或产生不良气味,严重影响药品的质量,甚至成为废品。

(三)其它类药物 芳胺类如磺胺嘧啶钠。吡唑酮类如氨基比林、安乃近。噻嗪类如盐酸氯丙嗪、盐酸异丙嗪等。这些药物都易氧化,其中有些药物氧化过程极为复杂,常生成有色物质。含有碳-碳双键的药物如维生素A或D的氧化,是典型的游离基链式反应。易氧化药物要特别注意光、氧、金属离子对他们的影响,以保证产品质量。

三、其它反应 (一)异构化 异构化一般分光学异构化(optical isomerization)和几何异构(geometric isomerization)二种。通常药物异构化后,生理活性降低甚至没有活性。 光学异构化 光学异构化可分为外消旋化作用(racemization)和差向异构(epimerization)。

差向异构化指具有多个不对称碳原子上的基团发生异构化的现象。1 差向异构化指具有多个不对称碳原子上的基团发生异构化的现象。1.       几何异构化 有些有机药物,反式异构体与顺式几何异构体的生理活性有差别。维生素A的活性形式是全反式(all-trans)。在多种维生素制剂中,维生素A除了氧化外,还可异构化,在2, 6位形成顺式异构化,此种异构体的活性比全反式低。

(二)聚合 聚合(polymerization)是两个或多个分子结合在一起形成的复杂分子。 已经证明氨苄青霉素浓的水溶液在贮存过程中能发生聚合反应,一个分子的-内酰胺环裂开与另一个分子反应形成二聚物。此过程可继续下去形成高聚物。据报告这类聚合物能诱发氨苄青霉素产生过敏反应。甲醛聚合生成三聚甲醛,这是大家熟知的现象。

(三)脱羧 对氨基水杨酸钠在光、热、水分存在的条件下很易脱羧,生成间氨基酚,后者还可进一步氧化变色。 普鲁卡因水解产物对氨基苯甲酸,也可慢慢脱羧生成苯胺,苯胺在光线影响下氧化生成有色物质,这就是盐酸普鲁卡因注射液变黄的原因。 碳酸氢钠注射液热压灭菌时产生二氧化碳,故溶液及安瓿空间均应通以二氧化碳。

第四节 影响的因素及稳定化方法 影响药物制剂分解的因素很多,从处方因素与外界因素两个方面来讨论。 一、处方因素对药物制剂稳定性的影响及解决方法制备任何一种制剂,首先要进行处方设计,因处方的组成对制剂稳定性影响很大。pH、广义的酸碱催化、溶剂、表面活性剂、某些辅料等因素,均可影响易于水解药物的稳定性。

(一)pH的影响 许多酯类、酰胺类药物常受H+或OH-催化水解、这种催化作用也叫专属酸碱催化(specific acid-base catalysis)或特殊酸碱催化,此类药物的水解速度,主要由pH决定。

lgk 图11-1 pH速度图

盐酸普鲁卡因pH速度图有一部分呈S型(如图11-2)。 图11-2 37C普鲁卡因pH-速度图

(二)广义酸碱催化的影响 按照Bronsted-Lowry酸碱理论,给出质子的物质叫广义的酸,接受质子的物质叫广义的碱。有些药物也可被广义的酸碱催化水解。这种催化作用叫广义的酸碱催化或一般酸碱催化。许多药物处方中,往往需要加入缓冲剂。常用的缓冲剂如醋酸盐、磷酸盐、枸橼酸盐、硼酸盐均为广义的酸碱

(三)溶剂的影响 对于水解的药物,有时采用非水溶剂如乙醇、丙二醇、甘油等而使其稳定。含有非水溶剂的注射液如苯巴比妥注射液、安定注射液等。

(四)离子强度的影响 在制剂处方中,往往加入电解质调节等渗,或加入盐(如一些抗氧剂)防止氧化,加入缓冲剂调接pH。因而存在离子强度对降解速度的影响,这种影响可用下式说明:

(五)表面活性剂的影响 一些溶剂水解的药物,加入表面活性剂可使稳定性的增加,如苯佐卡因易受碱催化水解,在5%的十二烷基硫酸钠溶液中,30C时的t1/2增加到1150分钟(不加十二烷基硫酸钠时则为64分钟)。这是因为表面活性剂在溶液中形成胶束(胶团),

(六)处方中基质或赋形剂的影响 一些半固体剂型如软膏、霜剂,药物的稳定性与制剂处方的基质有关。 维生素U片采用糖粉和淀粉为赋形剂,则产品变色,若应用磷酸氢钠,再辅以其它措施,产品质量则有所提高。

二、外界因素对稳定性的影响及解决方法 外界因素包括温度、光线、空气(氧)、金属离子、湿度和水分、包装材料等。这些因素对于制订产品的生产工艺条件和包装设计都是十分重要的。其中温度对各种降解途径(如水解、氧化等)均有影响,而光线、空气(氧)、金属离子对易氧化药物影响较大,湿度、水分主要影响固体药物的稳定性,包装材料是各种产品都必须考虑的问题。

(一)温度的影响 一般来说,温度升高,反应速度加快。根据Van’t Hoff规则,温度每升高10C,反应速度约增加2~4倍。 温度对于反应速度常数的影响,Arrhenius提出的方程(见本章,式11-5),定量地描述了温度与反应速度之间的关系,是药物稳定性预测的主要理论依据。

(二)光线的影响 光是一种辐射能,辐射能量的单位是光子。光子的能量与波长成反比,光线波长越短,能量越大,故紫外线更易激发化学反应,加速药物的分解。 有些药物分子受辐射(光线)作用使分子活化而产生分解的反应叫光化降解(photodegradation),其速度与系统的温度无关。这种易被光降解的物质叫光敏感物质。

(三)空气(氧)的影响 大气中的氧是引起药物制剂氧化的重要因素。大气中的氧进入制剂的主要途径,一方面是氧在水中有一定的溶解度。另一方面在药物容器空间的空气中,也存在着一定量的氧,各种药物制剂几乎都有与氧接触的机会。因此,对于易氧化的品种,除去氧气是防止氧化的根本措施。生产上一般在溶液中和容器空间通入惰性气体如二氧化碳或氮气,置换其中的氧。

(四)金属离子的影响 制剂中微量金属离子主要来自原辅料、溶剂、容器以及操作过程中使用的工具等。为方便起见,我们也在外界因素的影响这部分讨论。微量金属离子对自动氧化反应有显著的催化作用,如0.0002mol/L的铜能使维生素C氧化速度增大10 000倍。铜、铁、钴、镍、锌、铅等离子都有促进氧化作用,它们主要是缩短氧化作用的诱导期,增加游离基生成的速度。

(五)湿度和水分的影响 湿度与水分对固体药物制剂的稳定性的影响特别重要。 药物是否容易吸湿,取决其临界相对湿度(CRH%)的大小。氨苄青霉素极易吸湿,其临界相对湿度仅为47%[5],如果在相对湿度(RH%)75%的条件下,放置24小时,可吸收水分约20%,同时粉末溶化。这些原料药物的水分含量,一般水分控制在1%左右,水分含量越高分解越快[6]。

(六)包装材料的影响 包装问题往往被人们所忽视,实际上如药物制剂不考虑包装,则可能是最稳定的处方也不能得到优质的成品。药物贮藏于室温环境中,主要受热、光、水汽及空气(氧)的影响。包装设计就是要排除这些因素的干扰,同时也要考虑包装材料与药物制剂的相互作用,包装容器材料通常使用的有玻璃、塑料、橡胶及一些金属。

三、药物制剂稳定化的其它方法 前面结合影响因素对药物制剂稳定化也作了相应的讨论,但有些方法还不能概括,故在此作进一步的讨论。 (一)改进药物剂型或生产工艺 1.制成固体剂型 凡是在水溶液中证明是不稳定的药物,一般可制成固体制剂。供口服的做成片剂、胶囊剂、颗粒剂、干糖浆等。供注射的则做成注射用无菌粉末,可使稳定性大大提高。

2. 制成微囊或包合物 某些药物制成微囊可增加药物的稳定性。 3. 采用直接压片或包衣工艺 一些对湿热不稳定的药物,可以采用直接压片或干法制粒。包衣是解决片剂稳定性的常规方法之一,如氯丙嗪、非那根、对氨基水杨酸钠等,均做成包衣片。个别对光、热、水很敏感的药物如酒石麦角胺,一些药厂采用联合式干压包衣机制成包衣片,收到良好效果。

(二)制成难溶性盐 一般药物混悬液降解只决定其在溶液中的浓度,而不是产品中的总浓度。所以将容易水解的药物制成难溶性盐或难溶性酯类衍生物,可增加其稳定性。水溶性越低,稳定性越好。例如青霉素钾盐,可制成溶解度小的普鲁卡因青霉素G(水中溶解度为1:250),稳定性显着提高。青霉素还可与N, N-双苄乙二胺生成青霉素G(长效西林),其溶解度进一步减小(1:6000),故稳定性更佳,可以口服。

第五节 固体药物制剂稳定性的特点及降解动力学 一、固体药物制剂稳定性的特点 (一)固体药物与固体剂型稳定性的一般特点 固体药物一般分解较慢,需要较长时间和精确的分析方法;固体状态的药物分子相对固定,不象溶液那样可以自由移动;一些易氧化的药物,氧化作用往往限于固体表面,而将内部分子保护起来,以致表里变化不一。

固体剂型的主要特点有:①系统不均匀性。如片剂、胶囊,这一片与那一片含量就不一定完全相同,因而分析结果难以重现;②这些剂型又是多相系统,常包括气相(空气和水气)、液相(吸附的水分)和固相,当进行实验时,这些相的组成和状态能够发生变化。特别是水分的存在,对实验造成很大的困难,因水分对稳定性影响很大,由于这些特点,说明了研究固体药物剂型稳定性,是一件十分复杂的工作。

(二)药物晶型与稳定性的关系 物质在结晶时受各种因素影响,造成分子间键合方式改变,使分子相对排列发生变化,形成不同的晶体结构。不同晶型的药物,其理化性质如溶解度、溶点、密度、蒸气压、光学和电学性质也就不同,故稳定性出现差异。但应注意,晶态与晶型是不同的,结晶的外部形态称为晶态(crystal habit)或称晶癖和结晶习性。结晶内部结构具有不同的类别称晶型(crystal form)。

在药物生产中发现一些药物如利福平、氨苄青霉素钠、维生素B1等的稳定性与晶型有很大关系。利福平有无定型[熔点172~180C(分解)]、晶型A[熔点183~190C(分解)]和晶型B[熔点240C(分解)]。无定型在70C加速实验15天,含量下降10%以上;而晶型A和晶型B在同样条件下,含量下降1.5%~4%,室温贮藏3年,含量仍在90%以上。氨苄青霉素钠有A、B和C三种晶型,C型稳定性较好,A型与B型次之[9]。

(三)固体药物之间的相互作用 固体剂型中组份之间的相互作用导致组分的分解,由于非那西丁的某些毒副作用,故逐渐用对乙酰氨基酚(扑热息痛)代替非那西丁生产复方乙酰水杨酸片剂(APC)。现在发现乙酰水杨酸与对乙酰氨基酚之间有乙酰转移反应,也可能对乙酰氨基酚直接水解。含有对乙酰氨基酯的片剂在37C加速实验,游离水杨酸增加的情况见图11-4。

第六节 药物稳定性试验方法 本方法是根据中国药典2000年版附录有关药物稳定性试验指导原则和有关文献制定的[12-13]。稳定性试验的目的是考察原料药或药物制剂在温度、湿度、光线的影响下随时间变化的规律,为药品的生产、包装、贮存、运输条件提供科学依据,同时通过试验建立药品的有效期 .

稳定性试验的基本要求是: ①稳定性试验包括影响因素试验、加速试验与长期试验。影响因素试验适用原料药的考察,用一批原料药进行。药物制剂影响因素试验则在处方筛选与工艺研究中进行加速试验与长期试验,适用于原料药与药物制剂,要求用三批供试品进行; ②原料药供试品应是一定规模生产的,供试验品量相当于制剂稳定性实验所要求的批量,其合成工艺路线、方法、步骤应与大生产一致。

③供试品的质量标准应与各项基础研究及临床验证所使用的供试品质量标准一致;④加速试验与长期试验所用供试品的容器和包装材料及包装应与上市产品一致;⑤研究药物稳定性,要采用专属性强、准确、精密、灵敏的药物分析方法与有关物质(含降解产物和其他变化所生成的产物)检查方法,并对方法进行确证,以保证药物稳定性结果的可靠性。在稳定性试验中,应重视有关物质的检查。

一、影响因素试验 影响因素试验(强化试验stress testing)在比加速试验更激烈的条件下进行。原料药要求进行此项试验。供试品可以用一批原料药进行,将供试品置适宜的开口容器中(如称量瓶或培养皿),摊成5mm厚的薄层,疏松原料药摊成10mm厚薄层,进行以下实验。

(一)高温试验 供试品开口置适宜的洁净容器中,60C温度下放置十天,于第五、十天取样,按稳定性重点考察项目进行检测,同时准确称量试验前后供试品的重量,以考察供试品风化失重的情况。若供试品有明显变化(如含量下降5%)则在40C条件下同法进行试验。若60C无明显变化,不再进行40C试验。

(二)高湿度试验 供试品开口置恒湿密闭容器中,在25C分别于相对湿度(905)%条件下放置十天,于第五、十天取样,按稳定性重点考察项目要求检测,同时准确称量试验前后供试品的重量,以考察供试品的吸湿潮解性能。恒湿条件可在密闭容器如干燥器下部放置饱和盐溶液,根据不同相对湿度的要求,可以选择NaCl饱和溶液(相对湿度751%,15.5~60C),KNO3饱和溶液(相对湿度92.5%, 25C)。

(三)强光照射试验 供试品开口放置在光橱或其它适宜的光照仪器内,于照度为5000500 Lx的条件下放置十天(总照度量为120万Lx·h),于五、十天取样,按稳定性重点考察项目进行检测,特别要注意供试品的外观变化。有条件时还应采用紫外光照射(200whr/m2)。

二、加速试验 加速试验(Accelerated testing)是在超常的条件下进行。其目的是通过加速药物的化学或物理变化,为药品审评、包装、运输及贮存提供必要的资料。 原料药物与药物制剂均需进行此项试验,供试品要求三批,按市售包装,在温度402 C,相对湿度755%的条件下放置六个月。

在试验期间第1 个月、第2个月、第3个月、第6个月取样一次,按稳定性重点考察项目检测。在上述条件下,如六个月内供试品经检测不符合制订的质量标准,则应在中间条件下即在温度302 C,相对湿度605%的情况下(可用NaNO2饱和溶液,25~40C相对湿度64%~61.5%)进行加速试验,时间仍为六个月。

加速试验,建议采用隔水式电热恒温培养箱(20~60C),此种设备,箱内各部分温度应该均匀,若附加接点温度计与继电器装置,温度可控制1C,而且适合长期使用。 对温度特别敏感的药物制剂,预计只能在冰箱(4~8C)内保存使用,此类药物制剂的加速试验,可在温度252C,相对湿度605%的条件下进行,时间为六个月。溶液、混悬剂、乳剂、注射液可不要求相对湿度。

乳剂、混悬剂、软膏剂、眼膏剂、栓剂、气雾剂,泡腾片及泡腾颗粒宜直接采用温度302C、相对湿度605%的条件进行试验,其它要求与上述相同。 对于包装在半透性容器的药物制剂,如塑料袋装溶液,塑料瓶装滴眼剂、滴鼻剂等,则应在相对湿度202%的条件(可用CH3COOK. 1.5H2O饱和溶液,25C,相对湿度22.5%)进行试验。

三、长期试验 长期试验(Long-term testing)是在接近药品的实际贮存条件25℃2℃下进行,其目的是为制订药物的有效期提供依据。 原料药与药物制剂均需进行长期试验,供试品三批,市售包装,在温度252C,相对湿度6010%的条件下放置12个月。每3个月取样一次,分别于0、3、6、9、12个月,按稳定性重点考察项目进行检测。 12个月以后,仍需继续考察,分别于18、24、36个月取样进行检测。将结果与0月比较以确定药品的有效期。

六、固体制剂稳定性实验的特殊要求和特殊方法 (一)固体剂型稳定性实验的特殊要求 前节所述加速实验方法,一般适用于固体制剂,但根据固体药物稳定性的特点,还要有一些特殊要求,须引起实验者的注意。①由于水分对固体药物稳定性影响较大,每个样品必须测定水分,加速实验过程中也要测定。②样品必须密封容器。但为了考察材料的影响,可以用开口容器与密封容器同时进行,以便比较。

③测定含量和水分的样品,都要分别单次包装。④固体剂型要使样品含量尽量均匀,以避免测定结果的分散性。⑤药物颗粒的大小,对结果也有影响,故样品要用一定规格的筛号过筛,并测定其粒度,固体的表面是微粉的重要性质,必要时可用BET方法测定。⑥实验温度不宜过高,以60C以下为宜。

第七节 新药开发过程中药物系统稳定性研究 新药特别是一类新药的开发,稳定性研究是很重要的内容,开发一个新的药物与制剂,一般按以下步骤进行:①原料药的稳定性试验;②药物制剂处方与工艺研究中的稳定试验;③包装材料的稳定性与选择;④药物制剂的加速试验与长期试验;⑤药物制剂产品上市后的稳定性考察;⑥药物制剂处方或生产工艺或包装材料改变后的稳定性研究。详细内容详见有关规定与文献。