Euler’s method of construction of the Exponential function

Slides:



Advertisements
Similar presentations
663 Chapter 14 Integral Transform Method Integral transform 可以表示成如下的積分式的 transform  kernel Laplace transform is one of the integral transform 本章討論的 integral.
Advertisements

( Numerical Methods for Ordinary Differential Equations )
黄国文 中山大学 通用型英语人才培养中的 语言学教学 黄国文 中山大学
2014 年上学期 湖南长郡卫星远程学校 制作 13 Getting news from the Internet.
-CHINESE TIME (中文时间): Free Response idea: 你周末做了什么?
宏 观 经 济 学 N.Gregory Mankiw 上海杉达学院.
后置定语 形容词是表示人或事物的性质、特征或属性的一类词。它在句中可以充当定语,对名词起修饰、描绘作用,还可以充当表语、宾语补足语等。形容词作定语修饰名词时,一般放在被修饰的名词之前,称作前置定语。但有时也可放在被修饰的名词之后,称作后置定语。
-Artificial Neural Network- Hopfield Neural Network(HNN) 朝陽科技大學 資訊管理系 李麗華 教授.
第三章 隨機變數.
寻找进口商 监测竞争对手 提升企业竞争力
XI. Hilbert Huang Transform (HHT)
3-3 Modeling with Systems of DEs
CH1 Number Systems and Conversion
one Counting units 2 ones 3 ones.
期末考的範圍遠遠多於期中考,要了解的定理和觀念也非常多
Ⅱ、从方框里选择合适的单词填空,使句子完整通顺。 [ size beef special large yet ]
Unit 2 What should I do?.
Thinking of Instrumentation Survivability Under Severe Accident
Population proportion and sample proportion
模式识别 Pattern Recognition
关于数学教育 华东师范大学数学系 张奠宙 永安 4 4.
高三语法讲座 反意疑问句.
Differential Equations (DE)
二、現代的加解密法:RSA 非對稱式密碼系統的一種。
Chapter 4 歸納(Induction)與遞迴(Recursion)
Unit title: 买东西 - Shopping
微積分網路教學課程 應用統計學系 周 章.
Do you want to watch a game show?
非線性規劃 Nonlinear Programming
On Some Fuzzy Optimization Problems
期末考的範圍遠遠多於期中考,要了解的定理和觀念也非常多
Ch2 Infinite-horizon and Overlapping- generations Models (无限期与跨期模型)
Stochastic Relationships and Scatter Diagrams
创建型设计模式.
偏導數 第二十六單元.
Unit 5 Why do you like pandas?
主讲人: 吕敏 { } Spring 2016,USTC 算法基础 主讲人: 吕敏 { } Spring 2016,USTC.
Leave the “Babylons” That Have Enslaved Us.
本章大綱 2.1 The Limit of a Function函數的極限 2.2 Limit Laws極限的性質
第十五课:在医院看病.
Hobbies II Objectives A. Greet a long time no see friend: Respond to the greeting: B. Ask the friend if he/she likes to on this weekend? She/he doesn’t.
Traditional Chinese Medicine
Module 10 A holiday journey
A SMALL TRUTH TO MAKE LIFE 100%
Chp.4 The Discount Factor
Unit title: 买东西 - Shopping
Chp.4 The Discount Factor
BORROWING SUBTRACTION WITHIN 20
虚 拟 仪 器 virtual instrument
关联词 Writing.
Presentation 约翰316演示 John 3 : 16
公钥密码学与RSA.
计算机问题求解 – 论题 算法方法 2016年11月28日.
Inter-band calibration for atmosphere
The Bernoulli Distribution
Chp.4 The Discount Factor
Q & A.
冀教版 九年级  Look into Science!.
附加疑问句 Tag Question.
 隐式欧拉法 /* implicit Euler method */
动词不定式(6).
常州市教育学会学业水平监测 九年级英语试卷分析 常州市第二十四中学 许喆 2012年2月.
Class imbalance in Classification
Principle and application of optical information technology
Computer Architecture
高考英语作文指导 福建省教研室 姚瑞兰.
Reflections on life 生命的倒影.
Gaussian Process Ruohua Shi Meeting
Climbing a Rock Wall 攀岩 选自《多维阅读第10级》.
成为出色演讲者的 21个秘密 *** Glass Ceiling Question *** 李开复 微软副总裁.
Presentation transcript:

Euler’s method of construction of the Exponential function 北京景山学校 • 纪光老师 • Dec.2010 北京景山学校 - 激光老师- Dec.2009

Objective : build a function defined on such that for any , f’(x) = f(x) and f(0) = 1 北京景山学校 • 纪光老师 • Dec.2010

Objective : build a function defined on such that for any , f’(x) = f(x) and f(0) = 1 Reminder : from the definition of the derivative of a function f in one point a : 北京景山学校 • 纪光老师 • Dec.2010

Objective : build a function defined on such that for any , f’(x) = f(x) and f(0) = 1 Reminder : from the definition of the derivative of a function f in one point a : 北京景山学校 • 纪光老师 • Dec.2010

Objective : build a function defined on such that for any , f’(x) = f(x) and f(0) = 1 Reminder : from the definition of the derivative of a function f in one point a : f(a + h) = f(a) +h.f’(a)+ 北京景山学校 • 纪光老师 • Dec.2010

then f(a + h) ≈ f(a) +h.f’(a) +…… For any small value of h, close to 0, then f(a + h) ≈ f(a) +h.f’(a) +…… 北京景山学校 • 纪光老师 • Dec.2010

For any small value of h, close to 0, then f(a + h) ≈ f(a) +h.f’(a) +…… In this case we have f’(a) = f(a) and f(0) = 1 then for a =0  f(0 + h) ≈ f(0) +h.f’(0) = f(0) +h.f(0) =1 +h f(h) ≈ 1 + h 北京景山学校 • 纪光老师 • Dec.2010

f(h) ≈ 1 + h f(2h) ≈ f(h). (1+h) = (1+ h)2 For any small value of h, close to 0, then f(a + h) ≈ f(a) +h.f’(a) +…… In this case we have f’(a) = f(a) and f(0) = 1 then for a =0  f(0 + h) ≈ f(0) +h.f’(0) = f(0) +h.f(0) =1 +h f(h) ≈ 1 + h  f(2h) = f(h +h) ≈ f(h) + h.f’(h) f(2h) ≈ f(h). (1+h) = (1+ h)2 北京景山学校 • 纪光老师 • Dec.2010

Let un = f(nh) un+1 = un(1+h) un = f(nh) ≈ (1 + h)n f[(n+1)h] =f(nh +h) = f(nh)(1 +h) un+1 = un(1+h) The sequence (un) is Geometric 1st term u0 =f(0) = 1 reason q =1+h un = f(nh) ≈ (1 + h)n 北京景山学校 • 纪光老师 • Dec.2010

f(nh) ≈ (1 + h)n for example let and n = 100 then 北京景山学校 • 纪光老师 • Dec.2010

f(nh) ≈ (1 + h)n for example let and n = 100 then then for any Integer k 北京景山学校 • 纪光老师 • Dec.2010

北京景山学校 • 纪光老师 • Dec.2010

then for n = 100 we have : and for any Integer k we have : f(k) = ek 北京景山学校 • 纪光老师 • Dec.2010

then for n = 100 we have : and for any Integer k we have : f(k) = ek then for n = 100 we have : and for any Integer k we have : f(k) = ek Question : if x is any Real number can we write f(x) = ex ??? 北京景山学校 • 纪光老师 • Dec.2010

If n is a very large number compared to x, then we could let 北京景山学校 • 纪光老师 • Dec.2010

Problem : the formula : is “wrong” … If n is a very large number compared to x, then we could let Problem : the formula : is “wrong” … 北京景山学校 • 纪光老师 • Dec.2010

because it was established that The formula : is “wrong” … because it was established that only for the Integers m and n … …not for Real numbers … yet !) 北京景山学校 • 纪光老师 • Dec.2010

Let’s look at the present situation more closely with the computer… So what ? ! ? Let’s look at the present situation more closely with the computer… (Euler had a fabulous capacity of calculations and did not need to use a computer …) 北京景山学校 • 纪光老师 • Dec.2010

北京景山学校 • 纪光老师 • Dec.2010

In observing the spread sheet, we can see that for any real number x written in decimal form we can find a number N such that : We may decide to write Exp(0.67) or e0.67to match the previous results for the integers. 北京景山学校 • 纪光老师 • Dec.2010

(since it has a derivative). So what ? ! ? … Euler was able to calculate these values with a great acuracy, but he was mainly able to prove that the function defined by the original conditions f’(x) = f(x) and f(0) =1 is defined for any real and is continuous. (since it has a derivative). 北京景山学校 • 纪光老师 • Dec.2010

So what ? ! ? … Euler was able to calculate these values with a great acuracy, but he was mainly able to prove that the function defined by the original conditions f’(x) = f(x) and f(0) =1 is defined for any real number and is continuous. (since it has a derivative). He named it “Exponential” and he was also able to prove that this new function Exp. had a the fundamental property of transforming sums into products for any real numbers u and v Exp (u + v) = Exp(u) • Exp(v) Or eu+v = eu. ev Then the previous formula makes sense. 北京景山学校 • 纪光老师 • Dec.2010

Demo of the fundamental formula of the Exponential function (1) Let’s prove that if f’(x) = f(x) and f(0) = 1 then for any real numbers u and v we can write f(u + v) = f(u).f(v) 北京景山学校 • 纪光老师 • Dec.2010

Demo of the fundamental formula of the Exponential function (2) Let F(x) =f(a+x).f(-x) Then F’(x) =f’(a+x).f(-x) + f(a+x).[-f’(-x)] = f(a+x)•[f(-x)-f(-x)] = 0 Then F(x) is a constant : F(x)=F(0)=f(a) => f(x+a).f(-x) = f(a) And particularly for a =0 f(x).f(-x) = f(0) =1 北京景山学校 • 纪光老师 • Dec.2010

Demo of the fundamental formula of the Exponential function (3) Then by multiplying both members by f(x) in the previous equation we have : f(a+x).f(-x).f(x)=f(a).f(x) hence : f(a+x) = f(a).f(x) Or f(u + v) = f(u).f(v) 北京景山学校 • 纪光老师 • Dec.2010

Demo of the fundamental formula of the Exponential function (4) Then if we use the exponential notation : Exp(u +v) = Exp(u).Exp(v) eu + v = eu.ev 北京景山学校 • 纪光老师 • Dec.2010

More over Euler established a fundamental formula of development of functions in “power series” such that : 北京景山学校 • 纪光老师 • Dec.2010

More over Euler established a fundamental formula of development of functions in “power series” such that : It is this formula (using at least 6 or 7 terms) that is used in computers and pocket calculators to provide us with the “exact” values of Exp(x). Then we can check that the values found by the differential relationship are correct approximate values. 北京景山学校 • 纪光老师 • Dec.2010

Next week we will prove that the reciproqual is true : If a function f is not null and has a derivative on and if for any numbers u and v we have the formula f(u + v) = f(u).f(v) Then : f’(x) = f(x) 北京景山学校 • 纪光老师 • Dec.2010

谢谢 北京景山学校 • 纪光老师 • Dec.2010