CPM and PERT.

Slides:



Advertisements
Similar presentations
Unit 33 The New restaurant. Session I You have chosen everything now, haven’t you? 反意疑问句 I’ve got to order new chairs… order vt. 命令, 定购, 定制 你最好还是去预定一辆出租汽车。
Advertisements

桂林市 2011 年高三第二次调研考 试质量分析暨备考教学建议 桂林市教育科学研究所 李陆桂. 二调平均分与一调、 2010 广西高考英语平均分的比较 科目 类别 英语 文科文科 2010 年广西 一调 二调 与 10 年广西相差
英语中考复习探讨 如何写好书面表达 宁波滨海学校 李爱娣. 近三年中考试题分析 评分标准 试卷评分与练习 (2009 年书面表达为例 ) 影响给分的因素: 存在问题 书面表达高分技巧 建议.
SanazM Compiled By: SanazM Here Are Some Tips That May Bring You A Beautiful Life! Music: 美麗人生 Angel ( 主題曲 ) Revised By: Henry 以下是一些能帶給你一個美麗人生的秘訣 中文註解:
胸痛中心的时间流程管理 上海胸科医院 方唯一.
2014 年上学期 湖南长郡卫星远程学校 制作 13 Getting news from the Internet.
Unit 9 Have you ever been to an amusement park? Section A.
-CHINESE TIME (中文时间): Free Response idea: 你周末做了什么?
破舊立新(三) 人生召命的更新 使徒行傳廿六章19-23節.
樹德科技大學 全面品質管理-以裝備維修為例 指導教授:陳永璋博士 研究生:牛尚文 中華民國94年12月.
第三章 网络计划技术.
专题八 书面表达.
何謂專案管理? 美國專案管理學會 專案管理就是「為達成或超出利害關係人的需求或期望,把種種知識、技能、工具、技術應用在專案活動上,…,其牽涉到相互競爭的範疇,時間、成本、品質,以及利害關係人各種不同需求和期望之間的平衡」
How can we become good leamers
第9章 工程索赔管理.
商务英语口译教学的 教学理念与教学安排 广东金融学院外语系 聂泳华.
第四章 项目的时间管理.
项目管理 (项目管理师培训课程) 周 云 2007年4月10日.
第八章 時程規劃.
摘要的开头: The passage mainly tells us sth.
Welcome Welcome to my class Welcome to my class!.
Could you please clean your room?
Unit 4 I used to be afraid of the dark.
Module 5 Shopping 第2课时.
Population proportion and sample proportion
Good Afternoon. 威世智中国员工及 组织化赛事介绍 WotC China Staff and Organized Play Instruction Shane Xu
廢棄物處理現況與展望 行政院環境保護署綜計處 處長 葉俊宏.
第五章 物流企业经营决策与计划管理 学习目的:通过学习,重点了解经营决策的概念与类型;物流企业经营决策的程序与方法;物流企业经营计划的制定方法;能较熟练地应用网络计划技术。 第一节 经营决策的概念与类型 第二节 经营决策的方法 第三节 物流企业经营计划 第四节 网络计划技术.
微積分網路教學課程 應用統計學系 周 章.
非線性規劃 Nonlinear Programming
第七章 生產管理 第一節 生產管理基本概念 第二節 生產計畫 第三節 途程計畫 第四節 生產排程 第五節 計畫評核術及要徑法 第六節 工作分派與跟催 第七節 生產管制 工業工程與管理 第二版.
教材編號:A305 「專案管理基礎知識與應用實務」第五章 專案時程規劃 PMA「專案助理/技術士」課程 A204-1.
高考常考单选、写作句型默写.
Cross cultural communication in college english
Unit 7 What’s the highest mountain in the world?
但是如果你把它发给最少两个朋友。。。你将会有3年的好运气!!!
助動詞(Auxiliary Verbs) 重點1~9英文助動詞有: do must shall/should/ought to
Interval Estimation區間估計
塑膠材料的種類 塑膠在模具內的流動模式 流動性質的影響 溫度性質的影響
陳懿佐博士 台灣世曦高雄辦事處副理 P6時程延遲分析案例介紹 陳懿佐博士 台灣世曦高雄辦事處副理.
Lesson 44:Popular Sayings
第十五课:在医院看病.

時間管理 (Time) 授課教師:○○○老師.
專案管理 第五章 時間管理 楊富堯.
Version Control System Based DSNs
Have you read Treasure Island yet?
My favorite subject is science.
第一章 專案管理基本理念 與 MS Project 重要功能
Mechanics Exercise Class Ⅰ
Operations Management Unit 2: Project Management (1)
Chp.4 The Discount Factor
BORROWING SUBTRACTION WITHIN 20
3.5 Region Filling Region Filling is a process of “coloring in” a definite image area or region. 2019/4/19.
What time do you go to school? Section A (Grammar Focus-3c)
第一章 作業管理導論.
关联词 Writing.
Presentation 约翰316演示 John 3 : 16
高考应试作文写作训练 5. 正反观点对比.
Chapter 10 Mobile IP TCP/IP Protocol Suite
磁共振原理的临床应用.
為什麼要考國中教育會考 學生:了解自己的學力水準,並為下一學習階段作準備。
立足语境,放眼词块,螺旋上升 年温州一模试卷题型分析 及相应的二轮复习对策 by Sue March 14,2013.
English article read(英文文章閱讀)
Resources Planning for Applied Research
常州市教育学会学业水平监测 九年级英语试卷分析 常州市第二十四中学 许喆 2012年2月.
無悔今生.
簡單迴歸分析與相關分析 莊文忠 副教授 世新大學行政管理學系 計量分析一(莊文忠副教授) 2019/8/3.
My favorite subject science.
Principle and application of optical information technology
Presentation transcript:

CPM and PERT

The Program (or Project) Evaluation and Review Technique, commonly abbreviated PERT, is a model for project management designed to analyze and represent the tasks involved in completing a given project. It is commonly used in conjunction with the critical path method or CPM.

A Gantt chart created using Microsoft Project (MSP). Note the critical path is in red, the slack is the black lines connected to non-critical activities, since Saturday and Sunday are not work days and are thus excluded from the schedule, some bars on the Gantt chart are longer if they cut through a weekend.

Duration Slack

Duration Calculate the duration

Optimistic time (O): Pessimistic time (P): Most likely time (M): the minimum possible time required to accomplish a task, assuming everything proceeds better than is normally expected Pessimistic time (P): the maximum possible time required to accomplish a task, assuming everything goes wrong (but excluding major catastrophes). Most likely time (M): the best estimate of the time required to accomplish a task, assuming everything proceeds as normal.

Intuitively, we use a triangle distribution. min max modal

½*f(mo) *(ma-mi)=The area of the triangle=1

f(x1) / f(mo)= (x1-mi)/(mo-mi) Similarly f(x1) / f(mo)= (x1-mi)/(mo-mi) 2/(ma-mi) 2(ma-x2)/(ma-mo)/(ma-mi) 2(x1-mi)/(mo-mi)/(ma-mi) So f(x){ If(x>=mi&&x<=mo) return 2(x-mi)/(mo-mi)/(ma-mi); if(x>=mo&&x<=ma) return 2(ma-x)/(ma-mo)/(ma-mi); else{return 0;} } x1 mo x2 ma mi

The expectation will be =(min + modal + max) / 3; variance() { return (min * min + modal * modal + max * max - min * modal - modal * max - max * min) / 18; }

So we’ll try a smooth one Triangle is not smooth. The density changes too ACUTELY, esp. around the modal. So we’ll try a smooth one norm distribution?

spans out of the range(mi,ma)? Truncate If at 3sigma, then sigma=(ma-mi)/6 Modal Need to be twisted. Beta distribution comes into our attention.

Beta Distribution Where For a=0,b=1

Get the alpha and beta such that Shape Like Normal Distribution Kurtosis A high kurtosis distribution has a sharper peak and longer, fatter tails, while a low kurtosis distribution has a more rounded peak and shorter thinner tails. Normal Distribution is mesokurtic With the same var as Normal Distribution truncated at (-3sigma,3sigma)

Such a BetaDist a=1+4(mo-mi)/(ma-mi) b=1+4(ma-mo)/(ma-mi) TE = (O + 4M + P) ÷ 6 sVar =(ma-mi)/6

Expected time (TE): the best estimate of the time required to accomplish a task, assuming everything proceeds as normal (the implication being that the expected time is the average time the task would require if the task were repeated on a number of occasions over an extended period of time).

Activity Predecessor Time estimates Expected time Opt. (O) Normal (M) Pess. (P) A — 2 4 6 4.00 B 3 5 9 5.33 C 7 5.17 D 10 6.33 E B, C F 8 4.50 G 最早开始时间(ES) 最早结束时间(EF) 最迟开始时间(LS) 最迟结束时间(LF) 任务总时差(TF) 任务自由时差(FF)。

Slack

ES & EF The first step is to determine the ES and EF. The ES is defined as the maximum EF of all predecessor activities, unless the activity in question is the first activity, for which the ES is zero (0). The EF is the ES plus the task duration (EF = ES + duration).

The ES for start is zero since it is the first activity The ES for start is zero since it is the first activity. Since the duration is zero, the EF is also zero. This EF is used as the ES for a and b. The ES for a is zero. The duration (4 work days) is added to the ES to get an EF of four. This EF is used as the ES for c and d. The ES for b is zero. The duration (5.33 work days) is added to the ES to get an EF of 5.33. The ES for c is four. The duration (5.17 work days) is added to the ES to get an EF of 9.17. The ES for d is four. The duration (6.33 work days) is added to the ES to get an EF of 10.33. This EF is used as the ES for f. The ES for e is the greatest EF of its predecessor activities (b and c). Since b has an EF of 5.33 and c has an EF of 9.17, the ES of e is 9.17. The duration (5.17 work days) is added to the ES to get an EF of 14.34. This EF is used as the ES for g. The ES for f is 10.33. The duration (4.5 work days) is added to the ES to get an EF of 14.83. The ES for g is 14.34. The duration (5.17 work days) is added to the ES to get an EF of 19.51. The ES for finish is the greatest EF of its predecessor activities (f and g). Since f has an EF of 14.83 and g has an EF of 19.51, the ES of finish is 19.51. Finish is a milestone (and therefore has a duration of zero), so the EF is also 19.51.

LS &LF The next step is to determine the late start (LS) and late finish (LF) of each activity. This will eventually show if there are activities that have slack. The LS is the LF minus the task duration (LS = LF - duration).

The LF for finish is equal to the EF (19 The LF for finish is equal to the EF (19.51 work days) since it is the last activity in the project. Since the duration is zero, the LS is also 19.51 work days. This will be used as the LF for f and g. The LF for g is 19.51 work days. The duration (5.17 work days) is subtracted from the LF to get an LS of 14.34 work days. This will be used as the LF for e. The LF for f is 19.51 work days. The duration (4.5 work days) is subtracted from the LF to get an LS of 15.01 work days. This will be used as the LF for d. The LF for e is 14.34 work days. The duration (5.17 work days) is subtracted from the LF to get an LS of 9.17 work days. This will be used as the LF for b and c. The LF for d is 15.01 work days. The duration (6.33 work days) is subtracted from the LF to get an LS of 8.68 work days. The LF for c is 9.17 work days. The duration (5.17 work days) is subtracted from the LF to get an LS of 4 work days. The LF for b is 9.17 work days. The duration (5.33 work days) is subtracted from the LF to get an LS of 3.84 work days. The LF for a is the minimum LS of its successor activities. Since c has an LS of 4 work days and d has an LS of 8.68 work days, the LF for a is 4 work days. The duration (4 work days) is subtracted from the LF to get an LS of 0 work days. The LF for start is the minimum LS of its successor activities. Since a has an LS of 0 work days and b has an LS of 3.84 work days, the LS is 0 work days.

Slack Float or Slack  is the amount of time that a task in a project network can be delayed without causing a delay

Slack  Slack is computed in one of two ways, slack = LF - EF or slack = LS - ES. Activities that are on the critical path have a slack of zero (0). The duration of path adf is 14.83 work days. The duration of path aceg is 19.51 work days. The duration of path beg is 15.67 work days.

Slack Start and finish are milestones and by definition have no duration, therefore they can have no slack (0 work days). The activities on the critical path by definition have a slack of zero; however, it is always a good idea to check the math anyway when drawing by hand. LFa - EFa = 4 - 4 = 0 LFc - EFc = 9.17 - 9.17 = 0 LFe - EFe = 14.34 - 14.34 = 0 LFg - EFg = 19.51 - 19.51 = 0 Activity b has an LF of 9.17 and an EF of 5.33, so the slack is 3.84 work days. Activity d has an LF of 15.01 and an EF of 10.33, so the slack is 4.68 work days. Activity f has an LF of 19.51 and an EF of 14.83, so the slack is 4.68 work days. Therefore, activity b can be delayed almost 4 work days without delaying the project. Likewise, activity d or activity f can be delayed 4.68 work days without delaying the project (alternatively, d and f can be delayed 2.34 work days each).

CP The critical path is aceg and the critical time is 19.51 work days. It is important to note that there can be more than one critical path (in a project more complex than this example) or that the critical path can change. For example, let's say that activities d and f take their pessimistic (b) times to complete instead of their expected (TE) times. The critical path is now adf and the critical time is 22 work days. On the other hand, if activity c can be reduced to one work day, the path time for aceg is reduced to 15.34 work days, which is slightly less than the time of the new critical path, beg (15.67 work days).

MS Project Project中的PERT分析技术 在Project中可以执行“计划评审技术”(PERT)来评估任务工期。在为任务指定了乐观工期、悲观工期和预期工期之后,Project 就会自动计算这3个工期的加权平均值。在默认情况下,PERT 分析中的权数是按照1:4:1分配给乐观工期、最可能工期和悲观工期的。当然,用户也可根据实际情况调整这3个权数。 Project为PERT分析专门制作了工具栏,下图为“PERT工具栏”

【例6-5】修改PERT权数 (1)打开PERT工具栏:选择菜单【视图】/【工具栏】/【PERT分析】,系统启动如上图所示的PERT分析工具栏。 (2)单击“设置PERT权重”按钮,弹出如下所示对话框。

3.乐观、悲观和预期甘特图 既然每项任务都存在乐观、悲观和预期工期,对应地,根据这些数据可以分别计算项目与任务的时间参数,也就有了乐观、悲观和预期甘特图,它们都是甘特图的变体。 这3个变化后的甘特图,只有在使用 PERT 分析工具后才可用,而使用PERT 分析工又以加载PERT分析“组件对象模型”(COM) 加载项为前提。 “预期甘特图”视图——与 PERT 分析结合使用,有助于估算任务的预期工期、开始日期和完成日期。 使用“预期甘特图”视图可以进行如下操作: 输入项目任务的预计工期。 比较任务工期估计值之间的差别。 “预期甘特图”视图的默认工作列表是“预期状况”表。

PERT 项工作表 “PERT项工作表”的作用是帮助用户估算任务的确切工期。用户可以在该表重输入任务的乐观、预期和悲观工期,然后让 Project 计算最终的工期值t。通过更改 Project 赋予3个估计工期的权重,可以调整工期的估计值使其更加精确。 “PERT 项工作表”视图是“任务工作表”视图的一个变体。只有在加载了PERT分析“组件对象模型”(COM) 加载项后方能使用。“PERT 项工作表”视图操作的默认表是“PERT 项”表。 【例6-6】使用PERT分析估计任务工期 项目“06-06-begin.mpp”如下图,此时只有任务列表,工期、链接关系尚未设定。请按照如下步骤进行操作,使用PERT方法分析任务工期,结果保存为“06-06-over.mpp”。

【分析】完成该工作,需要使用到Project所提供的PERT分析功能,在使用PERT分析前,必须先加载“组件对象模型COM加载宏”。 (1)首先加载COM加载宏;选择菜单【工具】/【自定义】/【工具栏】,弹出“自定义”对话框,如下图所示。选择“命令”页,在左边“类别”栏中选择“工具”,在右边“命令”列表中选择“COM加载项”。 (2)在上述对话框中,单击右侧列表中的“COM加载项”这一项,按住鼠标左键不放,将该项拖到工具栏中适当位置再释放(位置决定于用户的习惯),该命令将显示在指定位置。 加载完毕后就可以进行项目的PERT分析计算了。 (3)单击工具栏中刚放入的按钮,弹出如下对话框,保证“PERT分析”前的复选框打勾,再单击确定按钮。

【说明】Project还提供了“乐观甘特图”、“悲观甘特图”和“预期甘特图”,它们分别是以对应的任务工期计算出来的时间参数。例如要查看项目的“乐观甘特图”,单击PERT分析工具栏中的“乐观甘特图”按钮,

Questions

1 2 3 [0,20]均匀分布 10