期末考的範圍遠遠多於期中考,要了解的定理和觀念也非常多 希望同學們能及早準備
Chapter 6 Series Solutions of Linear Equations 假設 DE 的 solutions 為 polynomial 的型態 (和 Cauchy-Euler Method 以及 Taylor Series 的概念相近) 被稱作為 power series centered at x0 x0 is a non-singular point (Sec. 6-1) regular singular point (Sec. 6-2) x0 is a singular point irregular singular point (Sec. 6-3): examples
Section 6-1 Solutions about Ordinary Points 假設解為 6-1-1 方法適用情形 (1) Linear (2) x0 is not a singular point (3) It is better that a0(x), a1(x), …., an(x), g(x) are all polynomials.
不是 singular point 的 即為 ordinary point 6-1-2 解法流程 Step 1 將 代入 (x0 必需為 ordinary point) 不是 singular point 的 即為 ordinary point Step 2 對齊 (一律變成 xk) Step 3 合併 Step 4 比較係數,將 cn 之間的關係找出來 Step 5 Obtained independent solutions and general solution
6-1-3 例子 Example 3 (text page 224) Set 6-1-3 例子 Example 3 (text page 224) Set since P(x) = 0 and Q(x) = x are analytic at 0 Step 1 set k = n + 1 set k = n −2 Step 2 對齊
Step 3 Step 4 2c2 = 0 c2 = 0 或 recurrence relation c0, c1 給定之後 k = 1 k = 2 k = 3
以此類推,所有的 cn 的值都可以算出來 (以 c0 或 c1 表示) k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 :
Step 5 y1 y2
Example 4 (text page 226) (analytic at x = 0) Radius of convergence? Step 1 k = n k = n − 2 k = n Step 2 k = n
Step 3 k = 0 k = 1 Step 4
c0, c1 給定之後 :
Step 5 y2 y1 |x| < 1 (Why?)
Example 6 (text page 228)
6-1-4 重要定義 1. Convergence: exists 6-1-4 重要定義 1. Convergence: exists 測試方法:Ratio test (test for convergence) L < 1: converge L > 1: diverge L = 1: 不一定 2. Radius of Convergence R L < 1 if |x − x0| < R L > 1 if |x − x0| > R
3. Analytic at x0: If the radius of convergence is nonzero 簡單的判斷 f(x) 在 x0 是否為analytic 方法 (1) f(x0) should be neither nor − (2) f(m)(x0) should be neither nor − m = 1, 2, 3, ……….
For the 2nd order linear DE Definition 6.1 x0 is an ordinary point of the 2nd order linear DE if both P(x) and Q(x) are analytic at x0 Otherwise, x0 is a singular point . Theorem 6.1 If x0 is an ordinary point of the 2nd order linear DE, then we can find two linearly independent solutions in the form of a power series centered at x0 , i.e.,
For the kth order linear DE Extension of Definition 6.1 x0 is an ordinary point of the kth order linear DE if P0(x), P1(x), P2(x), ………. , Pk−1 (x), are analytic at x0 Otherwise, x0 is a singular point . Extension of Theorem 6.1 If x0 is an ordinary point of the nth order linear DE, then we can find n linearly independent solutions in the form of a power series centered at x0 , i.e.,
6-1-5 思考 (1) 對於 nonhomogeneous 的情形….. (2) 這方法還可以用在什麼情形?
6-1-6 Interval of Convergence 的判斷方法 判斷方法一: 找出 的條件 判斷方法二 (較快速,但較不精準 找出的收斂的範圍有時會比實際的收斂範圍小) 其中 R 是 x0 和最近的 singular point 的距離 Singular point can be a complex number , see page 352 超過這個範圍未必不為 convergence
6-1-7 本節需注意的地方 (1) 要了解幾個重要定義: (a) convergence, (b) radius of convergence, (c) analytic at x0, (d) singular point, (e) ordinary point (2) 複習一下某些 function 的 Taylor series (如後頁) (3) Index 的地方計算要小心 (a) 先都化成 xk 再合併,(b) 頭幾項可能要獨立出來 (c) Index 對齊計算要小心 (4) nth order linear DE 要有 n 個 linearly independent 解 (5) 有時要考慮 interval of convergence
附:Taylor series
Section 6-2 Solutions about Singular Points 假設解為 6-2-1 方法適用情形 (1) Linear (2) (x −x0)Pn−1 (x), (x −x0)2Pn−2 (x), …………. , (x −x0)n−1P1(x), (x −x0)nP0(x) are analytic at x0 (比較: Section 6-1 要求 Pn−1 (x), Pn−2 (x), …………. , P1(x), P0(x) are analytic at x0) (3) It is better that P0(x), P1(x), …., Pn-1(x) are all polynomials.
6-2-2 定義 Singular Points 分成二種 6-2-2 定義 Singular Points 分成二種 If x0 is a singular point but (x −x0)Pn−1 (x), (x −x0)2Pn−2 (x), …………. , (x −x0)n−1P1(x), (x −x0)nP0(x) are analytic at x0 x0 : regular singular point If (x −x0)Pn−1 (x), (x −x0)2Pn−2 (x), …………. , (x −x0)n−1P1(x), (x −x0)nP0(x) are not analytic at x0 x0 : irregular singular point
Example 1 (text page 232) x = 2 is a point x = −2 is a point
6-2-3 解法 解法的關鍵: 假設解為 Theorem 6.2 Frobenius’ Theorem 6-2-3 解法 解法的關鍵: 假設解為 Theorem 6.2 Frobenius’ Theorem 若 x0 是 linear DE 當中的一個 regular singular point 則這個 linear DE 至少有一個解是 的型態
Process Step 1 將 代入 Step 2 Power 對齊 Step 3 合併 Step 4 算出 r Step 5 比較係數,將 cn 之間的關係找出來 Step 6 將 Step 4 得出的 r 代入 Step 5 得出所有的 independent solutions 及 general solution Step 7 (見後頁)
(Step 7) 當 (1) r 有重根 (2) 或 r 的根之間的差為整數,且從 Step 6 得出來的解不為 independent 時 用 和長除法找出 y2(x) (參考 Section 6-2 的 Examples 4, 5) 當 r 的根之間的差為整數,但從 Step 6 得出來的解為 independent 時, 不需進行這個步驟
6-2-4 範例 Example 2 (text page 234) Step 1 將 代入 Step 2 Power 對齊 6-2-4 範例 Example 2 (text page 234) Step 1 將 代入 Step 2 Power 對齊 n = k − 1 k = n k = n k = n + 1
Step 3 合併 Step 4 算出 r Step 5
Step 6 當 r = 0 當 r = 2/3 : :
Solution of Example 2 (別忘了將最後的解寫出)
Examples 4, 5 (text pages 237, 238) Step 1 將 代入 Step 2 對齊 n = k n = k −1 Step 3 合併
376 Step 4 Step 5 Step 6 當 r = 1
Step 6 當 r = 0 k = 1 時不能算 此時,應該根據 Step 3,由 (k = 1, r = 0 代入) c0 必需等於 0, c1 可為任意值 …………. 這地方容易犯錯,要小心 m = n − 1
因為前頁算出來的 y2(x) 等於 y1(x), 只好另外用 “reduction of order” 的方法求解
long division 長除法 為何不是 ln|x| ?
6-2-5 多項式的長除法 計算
6-2-6 Indicial Equation 2nd order case If x0 is a regular singular point where 由於 p(x) 和 q(x) 皆為 analytic
將 y(x), y'(x), y''(x), p(x), q(x) 代入 其中 (x x0) r 的 coefficient 為 indicial equation
當 linear DE 為 2nd order 時,r 可以由 求出 其中 a0 = p(x0) b0 = q(x0)
For the 2nd order case two roots: r1, r2 (Case 1) r1 r2 and r1, r2 are real, r2 − r1 integer 可以找出兩組 的解 (Case 2) r1 r2 and r1, r2 are real, r2 − r1 = integer 一個解是 另一個解是 C 有時等於 0 (和 case 1 相同) 有時不為 0
(Case 3) r1 = r2 時 C 一定不為 0 或寫成 (Case 4) r1 r2 and r1, r2 are complex 在此不予討論
6-2-7 Indicial Equation for Higher Order Case (補充) 當 linear DE 為 nth order 時 當中的 r 可以由 求出 其中 k = 0, 1, 2, …., n −1
6-2-8 本節需要注意的地方 (1) Index 對齊計算要小心 (建議可以向 power 較小的對齊,否則會出現負的 k) 6-2-8 本節需要注意的地方 (1) Index 對齊計算要小心 (建議可以向 power 較小的對齊,否則會出現負的 k) (2) 若 x = 0 為 regular singular point, 設 x0 = 0 即可 (3) 如果是 ck 和 ck−1 (或 ck−1 和 ck) 的 recursive relation 其實有時可以立刻將 cn 的式子觀察出來 (但是分母不可變為 0) (4) 小心分母為 0 的情形 (如 page 377) (5) 小心算出來的 y2(x) 和 y1(x) 相同的情形 (如 pages 377, 378)
(6)別忘了將最後的解寫出 最後的解易出錯的地方: 別忘了乘上 xr (7) Interval of solution 依然要考慮, 且 interval 不包括任何singular point, 即使是 regular singular point (8) 當 r2 − r1 為整數且 r2 > r1 時,先處理 r2 再處理 r1 (先看大的 root) (9) 複習長除法
Section 6-3 Special Functions Special cases of Sections 6-1 and 6-2 Bessel’s equation of order v Solution: : 1st kind Bessel function : 2nd kind Bessel function Legendre’s equation of order n One of the solution: Legendre polynomials (See page 406)
390 其他較重要的名詞 Gamma function modified Bessel equation of order v modified Bessel equation of the 1st kind modified Bessel equation of the 2nd kind Bessel 的另一種變型 解 spherical Bessel functions 解:c1Iv( x) + c2Kv(x)
6.3.1 Bessel’s Equation 6.3.1.1 Solving for Bessel’s equation of order v Steps 1~3 將 代入 經過一些計算 (詳見課本 page 241) 得出 Step 4 two roots: v and −v Step 5
Step 6 當 r = v 當 r = −v 由於 c1 = 0, c3 = c5 = c7 = c9 = ….. = 0 when r = v when r = −v
6.3.1.2 Gamma function: a generalization of n! properties of Gamma function (1) when n is a positive integer (2) 參照課本 Appendix 1
(3) when n is a negative integer or n = 0 (4) (x) x
6.3.1.1 回到 Solving for Bessel function when r = v Set
同理,當 r = −v set Two independent solutions of the Bessel’s equation 代入 When r = v When r = −v 稱作 Bessel functions of the first kind of order v and −v
6.3.1.3 Bessel function of the second kind 注意,兩個 roots 的差為 2v (1) 當 2v 不為整數時,Bessel’s equation 的解即為 c1Jv(x) + c2J−v(x) (也可表示成 c1Jv(x) + c2Yv(x)) (2) 當 2v 為整數,但 v = m + 1/2 (m 是一個整數) 時,Bessel’s equation 的解亦為 c1Jv(x) + c2J−v(x) (也可表示成 c1Jv(x) + c2Yv(x)) (3) 當 2v 為整數,且 v 是一個整數時, Bessel’s equation 的解為 c1Jv(x) + c2Yv(x) Yv(x): Bessel function of the second kind of order v (見後頁)
Yv(x): Bessel function of the second kind of order v 事實上,可以證明 當 m 為整數時, Ym(x) 定義成 用 L’Hopital’s rule 來算
6.3.1.4 Bessel function of the 1st kind (order m 為整數時)的性質 (1) J0(0) = 1, Jm(0) = 0 for m 0 (2) Zero crossing 的位置,隨著 m 增加而越來越遠 (見 Table 6.3.1)
(3) (4) (5) (6) 見 Example 5, text page 246
6.3.1.5 Bessel function of the 2nd kind (order m 為整數時)的性質 (1) (2) Zero crossing 的位置,隨著 m 增加而越來越遠
6.3.1.6 Bessel’s equation 的變型 解:c1Jv(x) + c2Yv(x) 解:c1Jv( x) + c2Yv( x) (A) Proof: Set t = x Similarly, 原式 = 對 t 而言是 Bessel equation y = c1Jv(t) + c2Yv(t) = c1Jv( x) + c2Yv( x)
(B) modified Bessel equation of order v 解:c1Iv( x) + c2Kv(x) 其中 稱作是 modified Bessel function of the first kind of order v 稱作是 modified Bessel function of the second kind of order v 當 v 為整數時,也是取 limit
(C) 解: 式子有點複雜,但可以用來解許多物理上的問題 Example 3 (text page 244)
6.3.1.7 Spherical Bessel Functions Jv(x) 當 時,稱作為 spherical Bessel functions
6.3.2 Legendre’s Equation 6.3.2.1 Legendre’s Equation 代入,得出 (過程見課本 pages 248, 249) 二個 linearly independent 的解分別為
(a) When n is not an integer, both the two solutions have infinite number of terms. (b) When n is an even integer, y1(x) has finite number of terms. In y1(x), the coefficient of xk is zero when k > n. (c) When n is an odd integer, y2(x) has finite number of terms. In y2(x), the coefficient of xk is zero when k > n. y1(x) when n is an even integer and y2(x) when n is an odd integer are called the Legendre polynomials (denoted by Pn(x)).
通常選 (讓 Pn(1) 一律等於 1) 由 y1(x) 由 y2(x)
Legendre polynomials Interval: x [−1, 1]
6.3.2.2 Properties of Legendre Polynomials (1) even / odd symmetry (2) (3) when n is odd (4) when n is even (5) recursive relation Rodrigues’ formula (6)
(7) If m n orthogonality property (8) 若任何在 x [−1, 1] 區間為 continuous 的函式 f(x) 皆可表示為 由於 根據 orthogonality property 所以 Orthogonality property 才是 Legendre polynomials 最重要的性質
6.3.2.3 補充:其他常見的 orthogonal polynomial Chebychev polynomials 電子學和 filter design 常用 Solutions of Hermite polynomials 電磁波、光學、頻譜分析常用 Solutions of
6.3.3 Section 6-3 需要注意的地方: (1) 概念簡單,但是定義,性質,和數學式甚多 擇要而學即可 (2) 要了解 Gamma function
Review of Chapter 6 解法適用範圍: Linear DE,且 coefficients 最好為 polynomials 當 Pm(x) 在 x = x0 時為 analytic x0 為 ordinary point 代入 當 Pm(x) 在 x = x0 時不為 analytic 但是 (x − x0 )n −mPm(x) 在 x = x0 時為 analytic x0 為 regular singular point 代入 有時,另一個解為
Exercise for practice Sec. 6-1: 2, 3, 10, 14, 16, 23, 28, 30, 33, 36 Sec. 6-2: 4, 9, 13, 22, 28, 29, 31, 33, 36 Sec. 6-3: 3, 9, 25, 27, 29, 37, 46, 47 Review 6 7, 10, 14, 19, 20, 22
Chapter 7 The Laplace Transform 作用:把微分變成乘法 Chapter 4 曾經提過 可寫成 Laplace transform 變成
Section 7-1 Definition of the Laplace Transform 7-1-1 Definitions Laplace Transform of f(t) 經常以大寫來代表 transform 的結果
Laplace Transform is one of the integral transform 把一個 function 變成另外一個 function integral transform: 可以表示成積分式的 transform kernel 對 Laplace transform 而言 a = 0, b 註:Chap. 14 將教到的 Fourier transform, 也是一種 integral transform
7-1-2 Linear Property 事實上,所有的 integral transform 都有linear property
7-1-3 The Laplace Transforms of Some Basic Functions f(t) F(s) 1 t n exp(at) sin(kt) cos(kt) sinh(kt) cosh(kt) (彼此密切相關)
Example 1 (1) 比較正式的寫法是 (2) 這裡假設 s > 0, 所以
Example 2
Example 3 Example 4 除了課本的解法之外, 另一個解法
Text page 258 的另外二個例子
7-1-4 When Does the Laplace Transforms Exist? Constraint 1 for the existence of the Laplace transform : For a function f(t), there should exist constants c, M > 0, and T > 0 such that for all t > T In this condition, f(t) is said to be of exponential order c Fig. 7.1.2
例子: f(t) = t, e−t, 2cost 皆為 exponential order 1 Fig. 7.1.3 補充:其實,對一個function 而言, exponential order c 不只一個 例子: f(t) = tn 為 exponential order c, c > 0 There exists an M such that if c > 0
例子: f(t) = exp(t2) 時,並不存在一個 c 使得 for all t > T Fig. 7.1.4 只要有一個 c 使得 for all t > T 我們稱 f(t) 為 of exponential order 否則,我們稱 f(t) 為 not of exponential order
Constraint 2 for the existence of the Laplace transform : f(t) should be piecewise continuous on [0, ) 在任何 t [a, b] 的區間內 (0 a b < ) f(t) 為 discontinuous 的點的個數為有限的 稱作是「piecewise continuous」 Fig. 7.1.1 注意: f(t) = 1/t 不為 piecewise continuous
Constraints 1 and 2 are “sufficient conditions” 若滿足 Laplace transform 存在 若不滿足 Laplace transform 未必不存在
反例: f(t) = t−1/2 不為 piecewise continuous 但是 Laplace transform 存在 補充說明:f(t) 不為 piecewise continuous 是因為 f(0) 所以 f(t) 在 t = 0 附近有無限多個不連續點 事實上,只要 f(t1) , |t1| is not infinite, f(t) 必定不為 piecewise continuous
Theorem 7.1.3 If f(t) is piecewise continuous on [0, ) and of exponential order, then
7-1-5 Section 7-1 需要注意的地方 (1) Laplace transform of some basic functions 要背起來 (2) 記公式時,一些地方要小心 sin, sinh, 1/tn 沒有平方 sin kt 有平方 (3) 熟悉(a) 包含 exponential function 的積分 以及 (b) 的積分技巧 (4) 要迅速判斷一個式子當 t 時是否為 0 (5) 小心正負號
附錄七:充分條件和必要條件的比較 If A is satisfied, then B is also satisfied : A is the sufficient conditions of B (充分條件) A B If B is satisfied, then A is bound to be satisfied : A is the necessary conditions of B (必要條件) B A B is satisfied if and only if A is be satisfied : A is the necessary and sufficient conditions of B (充分且必要的條件)
Section 7-2 Inverse Transforms and Transforms of Derivatives 本節有兩大部分: (1) inverse Laplace transform 的計算 (7-2-1 ~ 7-2-3) (2) 將微分變成 Laplace transform 當中的乘法 (7-2-4 ~ 7-2-6)
7-2-1 Inverse 方法一: One-to-One Relation When (1) f1(t) and f2(t) are piecewise continuous on [0, ), and (2) f1(t) and f2(t) are of exponential order, then if f1(t) f2(t) then F1(s) F2(s) 換句話說,在這種情形下,Laplace transform 是 one-to-one 的運算。 If the Laplace transform of f1(t) is F1(s), then the inverse Laplace transform of F1(s) must be f1(t).
Table of Inverse Laplace Transforms F(s) L−1{F(s)} 1 t n exp(at) sin(kt) cos(kt) sinh(kt) cosh(kt)
Example 1 (text page 263) (a) Example 2 (text page 264)
7-2-2 Inverse 方法 (二) Decomposition of Fractions Example 3 (text page 264) 問題:A, B, C 該如何算出? 太麻煩
7-2-3 計算分數分解係數的快速法 兩邊各乘上 (s − 1) 這二個步驟可以合併 把 s = 1 代入 7-2-3 計算分數分解係數的快速法 兩邊各乘上 (s − 1) 這二個步驟可以合併 把 s = 1 代入 左式乘上 (s − 2)後,把 s = 2 代入 左式乘上 (s + 4)後,把 s = −4 代入
(Cover up method) 通則:要將一個 fraction 分解 a1, a2, …., aN 互異 (1) 用多項式的除法算出 Q(s) 商 餘式 使得 order of K1(s) < N (2) 算出 An
例子:
小技巧:其實,如果只剩下一個未知數,我們可以將 s 用某個數代入, 快速的將未知數解出
例子:
7-2-4 Transforms of Derivatives
Theorem 7.2.2 Derivative Property of the Laplace Transform
7-2-5 Solving the Constant Coefficient Linear DE by Laplace Transforms
G(s): Laplace transform of the input Q(s): caused by initial conditions Y(s): Laplace transform of the response W(s): transform function L−1[W(s)Q(s)]: zero-input response or state response L−1[W(s)G(s)]: zero-state response or input response
Example 4 (text page 266)
Example 5 (text page 267) 快速法
7-2-6 快速法 (A) 求 P(s) 很像 Sec. 4-3 的… (B) 求 Q(s)
相加 例如,page 451 的例子
7-2-7 Section 7.2 需要注意的地方 (1) 熟悉分數分解 (2) 可以簡化運算的方法,能學則學 鼓勵各位同學多發揮創意,多多研究能簡化計算的快速法 數學上…….並沒有標準解法的存在 (3) Derivative 公式 initial conditions 的順序別弄反
Section 7-3 Operational Properties I 介紹兩個可以簡化 Laplace transform 計算的重要性質 First Translation Theorem (translation for s) Second Translation Theorem (translation for t) u(t): step function (注意兩者之間的異同)
7-3-1 First Translation Theorem (Translation for s) Proof:
7-3-1-1 Inverse of “Translation for s” When f(t) is piecewise continuous and of exponential order (一對一) 註: Sections 7-3 和 7-4 其他的定理亦如此
7-3-1-2 Examples Example 1 (text page 271) (a) (b)
Example 2 (text page 272) (a) (b)
Example 3 (text page 273)
7-3-2 Step Function u(t): unit step function u(t) = 1 for t > 0 t-axis t = 0 u(t−a) u(t−a) = 1 for t > a u(t−a) = 0 for t < a t-axis t = a The unit step function acts as a switch (開關).
Any piecewise continuous function can be expressed as the unit step function for t 0 Example 5 (text page 275) for 0 t < 5 for t > 5
In general, for 0 t < a for t > a
7-3-3 Second Translation Theorem (Translation for t) 465 7-3-3 Second Translation Theorem (Translation for t) a > 0 或 a > 0
Proof: 令 t1 = t − a
Example 6 (text page 276) Example 7 (text page 276)
Example 8 (text page 277) for 0 t < for t
7-3-4 本節需要注意的地方 (1) 套用 “translation for t” 的公式時, 7-3-4 本節需要注意的地方 (1) 套用 “translation for t” 的公式時, 先將 input 變成 g( t + a ) 再作 Laplace transform (例如 Example 7) (2) 變成「標準型態」後再作 inverse (3) Second translation theorem (translation for t) 當 a > 0 時才適用 (4) 套用公式時,注意「順序」