普通物理 General Physics 9 - Center of Mass and Momentum

Slides:



Advertisements
Similar presentations
Unit 4 Finding your way Integrated skills New words and phrases: past prep. 在另一边,到另一侧 treasure n. 宝藏 turning n. 转弯处 traffic n. 交通,来往车辆 traffic lights.
Advertisements

第七课:电脑和网络. 生词 上网 vs. 网上 我上网看天气预报。 今天早上看了网上的天气预报。 正式 zhèngshì (报告,会议,纪录) 他被这所学校正式录取 大桥已经落成,日内就可以正式通车 落伍 luòw ǔ 迟到 chídào 他怕迟到,六点就起床了.
Chapter 3 動力學 DYNAMICS 1.動力學 研究力與運動物理量的關係。 運動學相關物理量 動力學 力相關物理量 力 動量 動能
第二章 运动的守恒量和守恒定律 §2-1 质点系的内力和外力 质心 质心运动定理 §2-2 动量定理 动量守恒定律
自然運動 伽利略在運動學上的成就,奠定了牛頓動力學的基礎。伽利略成功的描述地球上物體的拋物運動,其主要基於兩個基本概念:
普通物理 General Physics 5 – Newton's Law of Motion
普通物理 General Physics 25 - Capacitors and Capacitance
普通物理 General Physics 13 - Newtonian Gravitation
广义相对论课堂5 引力红移/时间膨胀检验和推论
普通物理 General Physics 6 – Friction, Drag, and Centripetal Force
3. Motion in 2- & 3-D 二及三維運動 Vectors 向量
D. Halliday, R. Resnick, and J. Walker
位移與向量(Displacement and Vector)
普通物理 General Physics 28 - Magnetic Force
普通物理 General Physics 32 - Maxwell's Equations, Models of Magnetism
普通物理 General Physics 15 - Simple Harmonic Motion
非線性規劃 Nonlinear Programming
普通物理 General Physics 2 – Straight Line Motion
普通物理 General Physics 11 - Rotational Motion II 郭艷光Yen-Kuang Kuo
9. Systems of Particles 多質點系统
普通物理 General Physics 8 – Conservation of Energy
第五章 剛體運動 當我們不再考慮物體為一質點,而是一有限大小的實體時,以粒子為考量中心所推論出的運動定律將不再足以描述此物體的運動狀態與變化。
普通物理 General Physics 27 - Circuit Theory
Fundamentals of Physics 8/e 27 - Circuit Theory
Short Version : 6. Work, Energy & Power 短版: 6. 功,能和功率
Fundamentals of Physics 8/e 24 - Finding the Electric Potential
普通物理 General Physics 26 - Ohm's Law
普通物理 General Physics 10 - Rotational Motion I
普通物理 General Physics 7 – Work-Kinetic Energy Theorem
机器人学基础 第四章 机器人动力学 Fundamentals of Robotics Ch.4 Manipulator Dynamics
普通物理 General Physics 30 - Inductance
Fundamentals of Physics 8/e 29 - Current-Produced Magnetic Field
普通物理 General Physics 29 - Current-Produced Magnetic Field
Short Version :. 11. Rotational Vectors & Angular Momentum 短版:. 11
普通物理 General Physics 12 - Equilibrium, Indeterminate Structures
普通物理 General Physics 23 - Finding the Electric Field-II
Fundamentals of Physics 8/e 23 - Finding the Electric Field-II
Fundamentals of Physics 8/e 28 - Magnetic Force
普通物理 General Physics 22 - Finding the Electric Field-I
Short Version : 5. Newton's Laws Applications 短版: 5. 牛頓定律的應用
Fundamentals of Physics 8/e 25 - Capacitors and Capacitance
First-Law Analysis for a Control Volume
Neutron Stars and Black Holes 中子星和黑洞
Fundamentals of Physics 8/e 30 - Inductance
句子成分的省略(1).
Short Version : 9. Systems of Particles 短版: 9.多質點系统
普通物理 General Physics 21 - Coulomb's Law
行星運動 人類對天體的運行一直充滿著好奇與幻想,各式各樣的傳說與理論自古即流傳於各地。在這些論述中,不乏各式神鬼傳說與命運註解,也包含了許多爭論不休的學術觀點。雖然這些形而上的虛幻傳奇仍然流傳於坊間,但是科學上的爭執卻因牛頓重力理論(law of gravitation)的出現而大致底定。
Mechanics Exercise Class Ⅰ
BORROWING SUBTRACTION WITHIN 20
Summary for Chapters 24 摘要: 24章
成才之路 · 英语 人教版 · 必修1 路漫漫其修远兮 吾将上下而求索.
运动学 第一章 chapter 1 kinematices.
12. Static Equilibrium 靜力平衡
Q & A.
Part One: Mechanics 卷一:力學
Mechanics Exercise Class Ⅱ
Fundamentals of Physics 8/e 21 - Coulomb's Law
Fundamentals of Physics 8/e 22 - Finding the Electric Field-I
动词不定式(6).
汽車的保險桿應如何設計? 若有兩款不同的設計,一為十分堅固的鋼鐵設計造型,另一為多槽式的塑膠設計。其可能的優缺點為何?
發表於2005物理教學示範暑期研討會,國立清華大學物理系主辦 (2005/8/25~26)
12. Static Equilibrium 靜力平衡
Short Version : 8. Gravity 短版: 8. 重力
句子成分的省略(3).
定语从句(4).
Summary : 4. Newton's Laws 摘要: 4. 牛頓定律
Sun-Star第六届全国青少年英语口语大赛 全国总决赛 2015年2月 北京
Principle and application of optical information technology
When using opening and closing presentation slides, use the masterbrand logo at the correct size and in the right position. This slide meets both needs.
Presentation transcript:

普通物理 General Physics 9 - Center of Mass and Momentum 郭艷光Yen-Kuang Kuo 國立彰化師大物理系暨光電科技研究所 電子郵件: ykuo@cc.ncue.edu.tw 網頁: http://ykuo.ncue.edu.tw

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Outline 9-1 What Is Physics? 9-2 The Center of Mass 9-3 Newton’s Second Law for a System of Particles 9-4 Linear Momentum 9-5 The Linear Momentum of a System of Particles 9-6 Collision and Impulse 9-7 Conservation of Linear Momentum 9-8 Momentum and Kinetic Energy in Collisions 9-9 Inelastic Collisions in One Dimension 9-10 Elastic Collisions in One Dimension 9-11 Collisions in Two Dimensions 9-12 Systems with Varying Mass: A Rocket 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 9-1 What Is Physics? We will derive the equation of motion for the center of mass, and discuss the principle of conservation of linear momentum. Finally, we will use the conservation of linear momentum to study collisions in one and two dimensions and derive the equation of motion for rockets. 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 9-2 The Center of Mass Center of Mass: The center of mass of a system of particles is the point that moves as though (1) all of the system’s mass were concentrated there. (2) all external forces were applied there. Define the center of mass (com) of particles in order to predict the possible motion of the system. 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 9-2 The Center of Mass Systems of Particles: Define the position of the center of mass (com) of this two- particle system to be 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 9-2 The Center of Mass The coordinate system has been shifted leftward. The position of the center of mass is now defined as M: total mass of the system 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 9-2 The Center of Mass For N particles the (vector) position of the CM is M: total mass of the system 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 9-2 The Center of Mass In three dimensions, the center of mass must be identified by three coordinates. 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 9-2 The Center of Mass Center of Mass of Continuous Bodies: 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 9-2 The Center of Mass Consider the thin rod of mass M and length L. The mass of the element of volume dV is For a disk or cylinder, : kg/m3 ; : linear mass density : areal mass density ( kg/m2 ) 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-1 Three particles of masses m1 = 1.2 kg, m2 = 2.5 kg, and m3 = 3.4 kg form an equilateral triangle of edge length a = 140 cm. Where is the center of mass of this system? 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-1 Solution: 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-1 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-2 Figure shows a uniform metal plate P of radius 2R from which a disk of radius R has been stamped out (removed) in an assembly line. Using the xy coordinate system shown, locate the center of mass comP of the plate. 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-2 Solution: 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-2 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-3 A thin rod of length 3L is bent at right angles at a distance L from one end. Locate CM with respect to the corner. Take L = 1.2 m. 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-3 Solution: The CM of each arm is at its midpoint. If we take m1 = m, then m2 = 2m. 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

9-3 Newton’s Second Law for a System of Particles Newton’s second law for the motion of the center of mass of a system of particles: (1) is the net force of all external forces that act on the system. (2) M is total mass of the system. (3) is the acceleration of the center of mass. ( System of particles ) 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

9-3 Newton’s Second Law for a System of Particles Proof of equation: O m1 m3 m2 F1 F2 F3 x y z 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

9-3 Newton’s Second Law for a System of Particles 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

9-3 Newton’s Second Law for a System of Particles In terms of components, we have A fireworks rocket explodes in flight. The center of mass of the fragments would continue to follow the original parabolic path. 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-4 The three particles are initially at rest. Each experiences an external force due to bodies outside the three-particle system. The directions are indicated, and the magnitudes are F1 = 6.0 N, F2 = 12 N, and F3 = 14 N. What is the acceleration of the center of mass of the system, and in 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-4 what direction does it move? Solution: 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-4 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-5 A man of mass m1 = 60 kg is at the rear of a stationary boat of mass m2 = 40 kg and length 3 m, which can move freely on the water; see Fig. (a). The front of the boat is 2 m from the dock. What happens when the man walks to the front? 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-5 Solution: In terms of the initial position, Since there is no external force, xCM is fixed. 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 9-4 Linear Momentum Linear Momentum: The SI unit is . The time rate of change of the momentum of a particle is equal to the net force acting on the particle and is in the direction of that force. m: mass of a particle V: velocity of a particle 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 9-4 Linear Momentum In equation form this becomes Proof of equation: 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

9-5 The Linear Momentum of a System of Particles particles can by changed only by a net force . 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

9-6 Collision and Impulse The ball experiences a force that varies during the collision and changes the linear momentum of the ball. In time interval dt, the change in the ball’s momentum 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

9-6 Collision and Impulse 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

9-6 Collision and Impulse In many situations we do know the average force and the duration of the collision. Thus 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

9-6 Collision and Impulse Series of Collisions : If the particle stop after the collision, then If the particle bounce backward, then 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-6 When a male bighorn sheep runs head-first into an other male, the rate at which its speed drops to zero is dramatic. Figure gives a typical graph of the acceleration a versus time t for such a collision, with the acceleration taken as negative to correspond to an initially positive velocity. The peak acceleration has magnitude 34 m/s2 and the duration of the collision is 0.27 s. Assume that the sheep’s mass is 90.0 kg. What are 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-6 the magnitudes of the impulse and average force due to the collision? Solution: 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-7 (a) Figure is an overhead view of the path taken by a racecar driver as his car collides with the racetrack wall. Just before the collision, he is traveling at speed vi = 70 m/s along a straight line at 30° from the wall. Just after the collision, he is traveling at speed vf = 50 m/s along a straight line at 10° from the wall. His mass m is 80 kg. 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-7 (a) What is the impulse on the driver due to the collision? Solution: 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-7 (a) 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-7 (b) The collision lasts for 14 ms. What is the magnitude of the average force on the driver during the collision? Solution: 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

9-7 Conservation of Linear Momentum Law of Conservation of linear momentum: If the net external force on a system is zero, the total linear momentum is constant. (closed, isolated system) 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-8 One-dimensional explosion: A ballot box with mass m = 6.0 kg slides with speed v = 4.0 m/s across a frictionless floor in the positive direction of an x axis. The box explodes into two pieces. One piece, with mass m1 = 2.0 kg, moves in the positive direction of the x axis at v1 = 8.0 m/s. What is the velocity of the second piece, with mass m2? 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-8 Solution: The initial momentum The final momenta of the two pieces are 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-9 One-dimensional explosion: Fig. (a) shows a space hauler and cargo module, of total mass M, traveling along an x axis in deep space. They have an initial velocity of magnitude 2100 km/h relative to the Sun. With a small explosion, the hauler ejects the cargo module, of mass 0.20M (Fig. (b)). The hauler then travels 500 km/h faster than the module along the x axis; that is, the relative 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-9 speed between the hauler and the module is 500 km/h. What then is the velocity of the hauler relative to the Sun? 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-9 Solution: 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-10 (a) Two-dimensional explosion: A firecracker placed inside a coconut of mass M, initially at rest on a frictionless floor, blows the coconut into three pieces that slide across the floor. An overhead view is shown in Fig. (a). Piece C, with mass 0.30M, 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-10 (a) has final speed vfC = 5.0 m/s. What is the speed of piece B, with mass 0.20M? Solution: 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-10 (b) What is the speed of piece A? 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

9-8 Momentum and Kinetic Energy in Collisions Type of collision: (1) A perfectly elastic collision is defined as one in which the total kinetic energy of the particles is also conserved: (2) In an inelastic collision, the total kinetic energy of the particles changes. 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

9-9 Inelastic Collisions in One Dimension One-dimensional inelastic collision: Two bodies just before and just after they have a one-dimensional collision. 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

9-9 Inelastic Collisions in One Dimension One-Dimensional Completely Inelastic Collision: Two bodies before and after they have a completely inelastic collision (meaning they stick together). 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

9-9 Inelastic Collisions in One Dimension Velocity of the Center of Mass: 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-11 The ballistic pendulum was used to measure the speeds of bullets before electronic timing devices were developed. The version shown in figure consists of a large block of wood of mass M = 5.4 kg, hanging from two long cords. A bullet of 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-11 mass m = 9.5 g is fired into the block, coming quickly to rest. The block + bullet then swing upward, their center of mass rising a vertical distance h = 6.3 cm before the pendulum comes momentarily to rest at the end of its arc. What is the speed of the bullet just prior to the collision? 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-11 Solution: 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-12 (a) A 200-kg Cadillac limousine moving east at 10 m/s collides with a 1000-kg Honda Prelude moving west at 26 m/s. The collision is completely inelastic and takes place on an icy (frictionless) patch of road. Find their common velocity after the collision. m1: Calillac m2: Honda 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-12 (a) Solution: We assume the unknown common velocity V is in the + x direction. 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-12 (b) What is the fractional loss in kinetic energy? Solution: 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

9-10 Elastic Collisions in One Dimension In an elastic collision, the kinetic energy of each colliding body may change, but the total kinetic energy of the system does not change. 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

9-10 Elastic Collisions in One Dimension 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

9-10 Elastic Collisions in One Dimension Let us look at a few special situations: 1. Equal masses: If m1 = m2, 2. A massive target: If m2 >> m1, 3. A massive projectile: If m1 >> m2, and : Pool player’s result and and 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-13 Two metal spheres, suspended by vertical cords, initially just touch, Sphere 1, with mass m1 = 30 g, is pulled to the left to height h1 = 8.0 cm, and then released from rest. After swinging down, it undergoes an elastic collision with sphere 2, whose mass m2 = 75 g. 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-13 What is the velocity v1f of sphere 1 just after the collision? Solution: 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

9-11 Collisions in Two Dimensions Total linear momentum must be conserved. If it is also elastic, and then For a glancing collision (it is not head-on): (1) Along the x axis as 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

9-11 Collisions in Two Dimensions (2) Along the y axis as (3) 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

9-12 Systems with Varying Mass: A Rocket Finding the Acceleration and Velocity: In Fig. (a) and (b), we show the rocket at times t and t + dt. 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

9-12 Systems with Varying Mass: A Rocket U is the velocity of the ejected gases with respect to the initial reference frame in which we measure the rocket’s speed v. 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

9-12 Systems with Varying Mass: A Rocket ( first rocket equation ) ( second rocket equation ) 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-14 A rocket whose initial mass Mi is 850 kg consumes fuel at the rate R = 2.3 kg/s. The speed vrel of the exhaust gases relative to the rocket engine is 2800 m/s. (a) What thrust does the rocket engine provide? (b) What is the initial acceleration of the rocket? 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 Example 9-14 Solution: 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授 End of chapter 9! 2018/12/3 普通物理講義-9 / 國立彰化師範大學物理系/ 郭艷光教授