第七章:回归分析的其它问题 第一节 虚拟变量 第二节 设定误差 第三节 滞后变量模型介绍 第四节 随机解释变量 第五节 时间序列模型初步.

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第五章 经典单方程计量经济学模型:专门问题
«地学建模» 之 “随机时间序列分析模型”.
3.4 空间直线的方程.
非线性时间序列模型 一般非线性时间序列模型介绍 条件异方差模型 上海财经大学 统计与管理学院.
3.2.平稳性检验的单位根方法 单位根检验方法 DF检验 ADF检验 PP检验 KPSS检验 ERS检验 NP检验.
第四章 时间序列模型 一、向量自回归(VAR)模型 二、ARCH模型 三、单位根检验 四、协整分析与ECM模型.
第九章 时间序列计量经济学模型 时间序列的平稳性及其检验 随机时间序列分析模型 协整分析与误差修正模型.
第九章 时间序列计量经济学模型的理论与方法
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
第9章 平稳时间序列分析.
Multicollinearity 一、多重共线性的概念 二、多重共线性的后果 三、多重共线性的检验 四、克服多重共线性的方法 五、例题
《高等数学》(理学) 常数项级数的概念 袁安锋
第一章 行列式 第五节 Cramer定理 设含有n 个未知量的n个方程构成的线性方程组为 (Ⅰ) 由未知数的系数组成的n阶行列式
第十章 时间序列的特性.
量化视角下的豆粕投资机会分析 格林期货研发培训中心 郭坤龙.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
不确定度的传递与合成 间接测量结果不确定度的评估
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第一章 商品 第一节 价值创造 第二节 价值量 第三节 价值函数及其性质 第四节 商品经济的基本矛盾与利己利他经济人假设.
ARIMA模型在电量预测中的应用 蔡跳
二、Dickey-Fuller检验(DF检验)
第六章 多元时间序列分析.
计量经济学 第九章 时间序列计量经济模型.
7 平稳时间序列预测法 7.1 概述 7.2 时间序列的自相关分析 7.3 单位根检验和协整检验 7.4 ARMA模型的建模 回总目录.
时间序列回归.
非线性时间序列模型 一般非线性时间序列模型介绍 条件异方差模型 上海财经大学统计学系.
计算机数学基础 主讲老师: 邓辉文.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第十章 方差分析.
第七章 参数估计 7.3 参数的区间估计.
若2002年我国国民生产总值为 亿元,如果 ,那么经过多少年国民生产总值 每年平均增长 是2002年时的2倍? 解:设经过 年国民生产总值为2002年时的2倍, 根据题意有 , 即.
第4章 非线性规划 4.5 约束最优化方法 2019/4/6 山东大学 软件学院.
数列.
抽样和抽样分布 基本计算 Sampling & Sampling distribution
6.4不等式的解法举例(1) 2019年4月17日星期三.
模型分类问题 Presented by 刘婷婷 苏琬琳.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
Three stability circuits analysis with TINA-TI
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
第六章 自相关.
成绩是怎么算出来的? 16级第一学期半期考试成绩 班级 姓名 语文 数学 英语 政治 历史 地理 物理 化学 生物 总分 1 张三1 115
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
第九节 赋值运算符和赋值表达式.
第16讲 相似矩阵与方阵的对角化 主要内容: 1.相似矩阵 2. 方阵的对角化.
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
相关与回归 非确定关系 在宏观上存在关系,但并未精确到可以用函数关系来表达。青少年身高与年龄,体重与体表面积 非确定关系:
第4课时 绝对值.
多层循环 Private Sub Command1_Click() Dim i As Integer, j As Integer
学习任务三 偏导数 结合一元函数的导数学习二元函数的偏导数是非常有用的. 要求了解二元函数的偏导数的定义, 掌握二元函数偏导数的计算.
第一部分:概率 产生随机样本:对分布采样 均匀分布 其他分布 伪随机数 很多统计软件包中都有此工具 如在Matlab中:rand
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
§5.2 抽样分布   确定统计量的分布——抽样分布,是数理统计的基本问题之一.采用求随机向量的函数的分布的方法可得到抽样分布.由于样本容量一般不止2或 3(甚至还可能是随机的),故计算往往很复杂,有时还需要特殊技巧或特殊工具.   由于正态总体是最常见的总体,故本节介绍的几个抽样分布均对正态总体而言.
概率论与数理统计B.
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
§2 方阵的特征值与特征向量.
第二节 简单线性回归模型的最小二乘估计 用样本去估计总体回归函数,总要使用特定的方法,而任何估 计参数的方法都需要有一定的前提条件——假定条件 一、简单线性回归的基本假定 为什么要作基本假定? ●只有具备一定的假定条件,所作出的估计才具有良好的统计性质。 ●模型中有随机扰动项,估计的参数是随机变量,显然参数估计值的分布与扰动项的分布有关,只有对随机扰动的分布作出假定,才能比较方便地确定所估计参数的分布性质,也才可能进行假设检验和区间估计等统计推断。
第三节 随机区组设计的方差分析 随机区组设计资料的总平方和可以分解为三项: (10.10).
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
多元线性回归分析.
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
§2 自由代数 定义19.7:设X是集合,G是一个T-代数,为X到G的函数,若对每个T-代数A和X到A的函数,都存在唯一的G到A的同态映射,使得=,则称G(更严格的说是(G,))是生成集X上的自由T-代数。X中的元素称为生成元。 A变, 变 变, 也变 对给定的 和A,是唯一的.
Presentation transcript:

第七章:回归分析的其它问题 第一节 虚拟变量 第二节 设定误差 第三节 滞后变量模型介绍 第四节 随机解释变量 第五节 时间序列模型初步

第一节 虚拟变量 一、虚拟变量及其作用 1.定义:取值为0和1的人工变量,表示非量化(定性)因素对模型的影响,一般用符号D表示。例如:政策因素、地区因素、心理因素、季节因素等。 2.作用: ⑴描述和测量定性因素的影响; ⑵正确反映经济变量之间的相互关系,提高模型的精度; ⑶便于处理异常数据。

二、虚拟变量的设置原则 引入虚拟变量一般取0和1。 对定性因素一般取级别数减1个虚拟变量。例子1:性别因素,二个级别(男、女)取一个虚拟变量,D=1表示男(女),D=0表示女(男)。 例子2:季度因素,四个季度取3个变量。 小心“虚拟变量陷阱”!

三、虚拟变量的应用 1、在常数项引入虚拟变量,改变截距。 对上式作OLS,得到参数估计值和回归模型: (7.1.2)相当于两个回归模型:

2、在斜率处引入虚拟变量,改变斜率。 作OLS后得到参数估计值,回归模型为: 同样可以写成二个模型: 可考虑同时在截距和斜率引入虚拟变量:

3、虚拟变量用于季节性因素分析。 取 原模型若为 则引入虚拟变量后的模型为: 回归模型可视为:

例题:美国制造业的利润—销售额行为 模型: 利用1965—1970年六年的季度数据,得结果: 括号内为t统计值。 显然,三季度和四季度与一季度差异并不明显,重新回归,仅考虑二季度,有结果:

4、引用虚拟变量处理“时间拐点”问题。 常见的情况: a. 若T0为两个时间段之间的某个拐点,虚拟变量为: b. 用虚拟变量表示某个特殊时期的影响; 模型中虚拟变量可放在截距项或斜率处。

5、分阶段计酬问题。 若工作报酬与业务量挂钩,且不同业务量提成比例不一样(递增),设S1、S2为二个指标临界点 工资模型为:

作OLS得到参数估计值后,三个阶段的报酬回归模型为:

例子:佣金与销售额的关系: 模型: 样本回归函数:

第二节 设定误差 一、设定误差的定义: 计量经济模型在建立模型时发生变量选择或其它错误,导致OLS结果可能有问题。 二、设定误差的类型及后果 第二节 设定误差 一、设定误差的定义: 计量经济模型在建立模型时发生变量选择或其它错误,导致OLS结果可能有问题。 二、设定误差的类型及后果 一般的设定误差包括:1、多设无必要的解释变量;2、漏设重要的解释变量;3、引入错误的解释变量;4、错误的函数形式; 5、样本数据发生偏差。具体形式及后果见下页。

假设一正确模型为: 1、多设变量后,模型为: 为无关变量。 后果:OLS估计值仍是无偏估计,多设变量前的参数估计值均值为0。 2、漏设变量后,假设少x1,模型为: 后果:OLS估计值不是无偏估计,失效。 3、设错变量: 后果:参数的OLS估计值不是无偏的。(同2)

4、错误的函数形式如: 5、样本数据发生偏差时,可能有: 其中, 上述4、5二种类型因错误明显,无法用OLS求参数估计值。 一般 讨论1、2两种设定误差即可。

第三节 滞后变量模型介绍 一、滞后变量及模型 第三节 滞后变量模型介绍 一、滞后变量及模型 经济活动中,有些因素的影响不仅体现在当期,而且波及以后的时期。这种有滞后影响作用的因素构成的变量即为滞后变量,而含有滞后变量的模型称为滞后变量模型,分为有限滞后模型和无限滞后模型两类。 二、产生滞后变量的可能原因:一类原因为心理因素,人的行为或经济活动所具有的惯性;另一类因素为客观因素,包括技术因素和制度因素两种。

三、滞后变量模型面临的问题 滞后变量模型若直接使用OLS,可能会出现一些问题: 1、多重共线性问题; 2、自由度损失问题; 3、滞后变量模型中,最大滞后程度或者说最大滞后期限较难确定。 由于上述原因,滞后变量模型一般会采用其它的估计方法。

四、滞后变量模型的类型 1、分布滞后模型。滞后变量仅为解释变量,形式为: 2、自回归模型。滞后变量为被解释变量的滞后值,且被解释变量的滞后值作为解释变量用。形式为: 滞后变量模型常用的估计方法有Alt-Tinbergen方法、Almon估计法、Koyck方法等。

第四节 随机解释变量 一、随机解释变量:即解释变量为随机变量,违背了基本假设。实际的经济活动中,随机解释变量较为常见。 第四节 随机解释变量 一、随机解释变量:即解释变量为随机变量,违背了基本假设。实际的经济活动中,随机解释变量较为常见。 单方程线性计量经济学模型假设之一是: 即解释变量与随机项不相关。 这一假设实际是要求: 或者X是确定性变量,不是随机变量; 或者X虽是随机变量,但与随机误差项不相关。 违背这一假设设的问题被称为随机解释变量问题。

二、随机解释变量的成因: 1、滞后被解释变量; 2、观测误差的存在,使得解释变量的样本值出现不确定性; 3、有些经济变量不能用确定性的方法控制样本值,所以观测值具有随机性。

三、随机解释变量 的三种后果 1、解释变量是随机的,但与随机误差变量不相关,即有: 因为OLS估计值为: 且有

2、解释变量为随机变量,小样本情况下与随机误差变量相关,但渐近不相关,即: 此时 为B的渐近无偏估计。 3、解释变量是随机变量,且与随机误差变量在任何情况下都高度相关,即有: 则OLS估计值 为B的有偏估计。

强调:滞后被解释变量作解释变量,并且与随机误差项相关 如果模型中的随机解释变量是滞后被解释变量,并且与随机误差项相关时,除了OLS法参数估计量是有偏外,还带来两个后果: ①模型必然具有随机误差项的自相关性。因为该滞后被解释变量与滞后随机误差项相关,又与当期随机误差项相关。 ②D.W.检验失效。因为不管D.W.统计量的数值是多少,随机误差项的自相关性总是存在的。

随机解释变量模型举例: A、耐用品存量调整模型: 耐用品的存量Qt由前一个时期的存量Qt-1和当期收入It共同决定: 这是一个滞后被解释变量作为解释变量的模型。 但是,如果模型不存在随机误差项的序列相关性,那么随机解释变量Q t-1只与ut-1相关,与ut不相关,属于上述的第1种情况。

合理预期理论认为消费是由对收入的预期所决定的,或者说消费是有计划的,而这个计划是根据对收入的预期制定的。于是有: B、合理预期的消费函数模型 合理预期理论认为消费是由对收入的预期所决定的,或者说消费是有计划的,而这个计划是根据对收入的预期制定的。于是有: e t Y 其中 表示 t 期收入预期值。 而预期收入与实际收入之间存在差距,表现为: e t Y 1 ) ( - + = l 该式是由合理预期理论给出的。

容易推得: 存量调整模型和合理预期模型都是较有代表性的滞后变量模型。 在该模型中,作为解释变量的 不仅是一个随机解释变量,而且与模型的随机误差项 高度相关(因为Ct-1与ut-1高度相关)。属于上述第3种情况。 存量调整模型和合理预期模型都是较有代表性的滞后变量模型。

第五节 时间序列模型初步 时间序列模型:所谓时间序列,就是各种社会、经济、自然现象的数量指标按照时间序列排列起来的经计数据。所谓时间序列分析模型,就是揭示时间序列自身的变化规律和相互联系的数学表达式(李子奈)。时间序列模型分确定性模型和随机模型两大类。 我们主要介绍随机模型和序列稳定性检验。

随机时间序列模型(time series modeling)是指仅用它的过去值及随机扰动项所建立起来的模型,其一般形式为 1、时间序列模型的基本概念 随机时间序列模型(time series modeling)是指仅用它的过去值及随机扰动项所建立起来的模型,其一般形式为 建立具体的时间序列模型,需解决如下三个问题: (1)模型的具体形式 (2)时序变量的滞后期 (3)随机扰动项的结构 例如,取线性方程、一期滞后以及白噪声随机扰动项( t =t),模型将是一个1阶自回归过程AR(1): Xt=Xt-1+ t 这里, t特指一白噪声(零均值、等方差、不相关),

一般的p阶自回归过程AR(p)是 (1)如果随机扰动项是一个白噪声(t=t),则称(*)式为一纯AR(p)过程(pure AR(p) process),记为 (2)如果t不是一个白噪声,通常认为它是一个q阶的移动平均(moving average)过程MA(q): 该式给出了一个纯MA(q)过程(pure MA(p) process)。

将纯AR(p)与纯MA(q)结合,得到一个一般的自回归移动平均(autoreg ressive moving average)过程ARMA(p,q): Xt=1Xt-1+ 2Xt-2 + … + pXt-p + t - 1t-1 - 2t-2 -  - qt-q 该式表明: (1)一个随机时间序列可以通过一个自回归移动平均过程生成,即该序列可以由其自身的过去或滞后值以及随机扰动项来解释。 (2)如果该序列是平稳的,即它的行为并不会随着时间的推移而变化,那么我们就可以通过该序列过去的行为来预测未来。 这也正是随机时间序列分析模型的优势所在。

滞后算子(lag operator )L: 引入滞后算子(lag operator )L,具有: (*)式变换为: 考虑p阶自回归模型AR(p) (*) 引入滞后算子(lag operator )L,具有: (*)式变换为: 记 (*)式又变换为:

对于移动平均模型MR(q): 其中t是一个白噪声,引入L有: 记 则有: 自回归移动平均过程ARMA(p,q)的滞后算子式为:

2、时间序列分析模型的适用性 经典回归模型的问题: 迄今为止,对一个时间序列Xt的变动进行解释或预测,是通过某个单方程回归模型或联立方程回归模型进行的,由于它们以因果关系为基础,且具有一定的模型结构,因此也常称为结构式模型(structural model)。 然而,如果Xt波动的主要原因可能是我们无法解释的因素,如气候、消费者偏好的变化等,则利用结构式模型来解释Xt的变动就比较困难或不可能,因为要取得相应的量化数据,并建立令人满意的回归模型是很困难的。 有时,即使能估计出一个较为满意的因果关系回归方程,但由于对某些解释变量未来值的预测本身就非常困难,甚至比预测被解释变量的未来值更困难,这时因果关系的回归模型及其预测技术就不适用了。

例如,时间序列过去是否有明显的增长趋势,如果增长趋势在过去的行为中占主导地位,能否认为它也会在未来的行为里占主导地位呢? 在这些情况下,我们采用另一条预测途径:通过时间序列的历史数据,得出关于其过去行为的有关结论,进而对时间序列未来行为进行推断。 例如,时间序列过去是否有明显的增长趋势,如果增长趋势在过去的行为中占主导地位,能否认为它也会在未来的行为里占主导地位呢? 或者时间序列显示出循环周期性行为,我们能否利用过去的这种行为来外推它的未来走向? ●随机时间序列分析模型,就是要通过序列过去的变化特征来预测未来的变化趋势。 使用时间序列分析模型的另一个原因在于: 如果经济理论正确地阐释了现实经济结构,则这一结构可以写成类似于ARMA(p,q)式的时间序列分析模型的形式。

二、时间序列数据的平稳性

1、平稳的定义 1)均值E(Xt)=是与时间t 无关的常数; 2)方差Var(Xt)=2是与时间t 无关的常数; 假定某个时间序列是由某一随机过程(stochastic process)生成的,即假定时间序列{Xt}(t=1, 2, …)的每一个数值都是从一个概率分布中随机得到,如果满足下列条件: 1)均值E(Xt)=是与时间t 无关的常数; 2)方差Var(Xt)=2是与时间t 无关的常数; 3)协方差Cov(Xt,Xt+k)=k 是只与时期间隔k有关,与时间t 无关的常数; 则称该随机时间序列是平稳的(stationary),而该随机过程是一平稳随机过程(stationary stochastic process)。

例1.一个最简单的随机时间序列是一具有零均值同方差的独立分布序列: Xt=t , t~N(0,2) 该序列常被称为是一个白噪声(white noise)。 由于Xt具有相同的均值与方差,且协方差为零,由定义,一个白噪声序列是平稳的。 例2.另一个简单的随机时间列序被称为随机游走(random walk),该序列由如下随机过程生成: Xt=Xt-1+t 这里, t是一个白噪声。

容易知道该序列有相同的均值:E(Xt)=E(Xt-1) 为了检验该序列是否具有相同的方差,可假设Xt的初值为X0,则易知 X1=X0+1 X2=X1+2=X0+1+2 … … Xt=X0+1+2+…+t 由于X0为常数,t是一个白噪声,因此Var(Xt)=t2 即Xt的方差与时间t有关而非常数,它是一非平稳序列。

然而,对X取一阶差分(first difference): Xt=Xt-Xt-1=t 由于t是一个白噪声,则序列 是平稳的。 后面将会看到:如果一个时间序列是非平稳的,它常常可通过取差分的方法而形成平稳序列。 事实上,随机游走过程是下面我们称之为1阶自回归AR(1)过程的特例 Xt=Xt-1+t 不难验证:1)||>1时,该随机过程生成的时间序列是发散的,表现为持续上升(>1)或持续下降(<-1),因此是非平稳的;

2、随机序列平稳性的单位根检验(unit root test) 单位根检验统计检验中普遍应用的一种检验方法。 1)、DF检验 我们已知道,随机游走序列 Xt=Xt-1+t 是非平稳的,其中t是白噪声。 而该序列可看成是随机模型 Xt=Xt-1+t 中参数=1时的情形。

也就是说,我们对式 (*) 做回归,如果确实发现 ,就说随机变量Xt有一个单位根。 (*)式可变形式为差分: (**) 检验(*)式是否存在单位根=1,也可通过(**)式判断是否有 =0。

检验一个时间序列Xt的平稳性,可通过检验带有截距项的一阶自回归模型 (*) 中的参数是否小于1。 一般地: 检验一个时间序列Xt的平稳性,可通过检验带有截距项的一阶自回归模型 (*) 中的参数是否小于1。 或者:检验其等价变形式 (**) 中的参数是否小于0 。 可以证明,(*)式中的参数>1或=1时,时间序列是非平稳的; 对应于(**)式,则是>0或 =0,时间序列是非平稳的; 。

在式 中。 零假设 ;备择假设 上述检验可通过OLS法下的t检验完成。 在式 中。 零假设 ;备择假设 上述检验可通过OLS法下的t检验完成。 然而,在零假设(序列非平稳)下,即使在大样本下t统计量也是有偏误的(向下偏倚),通常的t 检验无法使用。

Dicky和Fuller于1976年提出了这一情形下t统计量服从的分布(这时的t统计量称为统计量),即DF分布(见表9.1.3)。

因此,可通过OLS法估计 并计算t统计量的值,与DF分布表中给定显著性水平下的临界值比较: 如果:t<临界值,则拒绝零假设H0: =0, 认为时间序列不存在单位根,是平稳的。 注意:在不同的教科书上有不同的描述,但是结果是相同的。 例如:“如果计算得到的t统计量的绝对值大于临界值的绝对值,则拒绝ρ=0”的假设,原序列不存在单位根,为平稳序列。

2、ADF检验 DF检验假定了时间序列是由具有白噪声随机误差项的一阶自回归过程AR(1)生成的。 但在实际检验中,时间序列可能由更高阶的自回归过程生成的,或者随机误差项并非是白噪声,这样用OLS法进行估计均会表现出随机误差项出现自相关(autocorrelation),导致DF检验无效。 另外,如果时间序列包含有明显的随时间变化的某种趋势(如上升或下降),则也容易导致上述检验中的自相关随机误差项问题。 为了保证DF检验中随机误差项的白噪声特性,Dicky和Fuller对DF检验进行了扩充,形成了ADF(Augment Dickey-Fuller )检验。

ADF检验是通过下面三个模型完成的: 模型3 中的t是时间变量,代表了时间序列随时间变化的某种趋势(如果有的话)。 检验的假设都是:针对H1: <0,检验 H0:=0,即存在一单位根。模型1与另两模型的差别在于是否包含有常数项和趋势项。

注意: 可以说,DF检验是模型1中差分滞后期为0时的特殊情形,实际运用中只要没有趋势项变量t,两者差异不大。

检验原理与DF检验相同,只是对模型1、2、3进行检验时,有各自相应的临界值。 表9.1.4给出了三个模型所使用的ADF分布临界值表。但在Eviews软件中,临界值在结果中同时给出,使用软件后,下表意义不大。

一个简单的检验过程: 同时估计出上述三个模型的适当形式,然后通过ADF临界值表检验零假设H0:=0。 1)只要其中有一个模型的检验结果拒绝了零假设,就可以认为时间序列是平稳的; 2)当三个模型的检验结果都不能拒绝零假设时,则认为时间序列是非平稳的。 这里所谓模型适当的形式就是在每个模型中选取适当的滞后差分项,以使模型的残差项是一个白噪声(主要保证不存在自相关)。

ADF检验的Eviews实现 在主菜单选择Quick/Series Statistics/Unit Root Test,屏幕提示用户输入待检验序列名,输入后,会出现对话框: 选择滞后阶(Lagged diffierence),选择方程形式,点OK。

出现结果: 结果右面给出的是显著水平在1%、5%和10%下的临界值,如果ADF检验值小于某个临界值,即以该显著水平推翻原假设 ,接受备选假设 ,此时序列是平稳的。 上图中ADF值为0.009992>-2.8196,不能推翻原假设,被检序列是非平稳的。