普通物理 General Physics 10 - Rotational Motion I

Slides:



Advertisements
Similar presentations
自然運動 伽利略在運動學上的成就,奠定了牛頓動力學的基礎。伽利略成功的描述地球上物體的拋物運動,其主要基於兩個基本概念:
Advertisements

普通物理 General Physics 5 – Newton's Law of Motion
普通物理 General Physics 3 – Vectors Quantities
普通物理 General Physics 25 - Capacitors and Capacitance
普通物理 General Physics 13 - Newtonian Gravitation
Differential Equations (DE)
普通物理 General Physics 6 – Friction, Drag, and Centripetal Force
3. Motion in 2- & 3-D 二及三維運動 Vectors 向量
D. Halliday, R. Resnick, and J. Walker
位移與向量(Displacement and Vector)
微積分網路教學課程 應用統計學系 周 章.
4. Newton's Laws 牛頓定律 The Wrong Question 問錯題
普通物理 General Physics 28 - Magnetic Force
普通物理 General Physics 32 - Maxwell's Equations, Models of Magnetism
普通物理 General Physics 15 - Simple Harmonic Motion
普通物理 General Physics 2 – Straight Line Motion
普通物理 General Physics 11 - Rotational Motion II 郭艷光Yen-Kuang Kuo
普通物理 General Physics 8 – Conservation of Energy
第五章 剛體運動 當我們不再考慮物體為一質點,而是一有限大小的實體時,以粒子為考量中心所推論出的運動定律將不再足以描述此物體的運動狀態與變化。
普通物理 General Physics 27 - Circuit Theory
Fundamentals of Physics 8/e 27 - Circuit Theory
Short Version : 6. Work, Energy & Power 短版: 6. 功,能和功率
Fundamentals of Physics 8/e 24 - Finding the Electric Potential
普通物理 General Physics 9 - Center of Mass and Momentum
普通物理 General Physics 26 - Ohm's Law
機械波 Mechanical Waves Mechanical wave is a disturbance that travels through some material or substance called the medium for wave. Transverse wave is the.
干涉與繞射(I) 有哪些現象是和『干涉』『繞射』有關? 為什麼有的叫干涉?有的叫繞射?如何區分? 同調性 coherent.
普通物理 General Physics 7 – Work-Kinetic Energy Theorem
机器人学基础 第四章 机器人动力学 Fundamentals of Robotics Ch.4 Manipulator Dynamics
普通物理 General Physics 30 - Inductance
Fundamentals of Physics 8/e 29 - Current-Produced Magnetic Field
普通物理 General Physics 29 - Current-Produced Magnetic Field
Short Version :. 11. Rotational Vectors & Angular Momentum 短版:. 11
普通物理 General Physics 12 - Equilibrium, Indeterminate Structures
Interval Estimation區間估計
普通物理 General Physics 23 - Finding the Electric Field-II
Fundamentals of Physics 8/e 23 - Finding the Electric Field-II
CHAPTER 7 轉動 第一節 定軸轉動 第二節 角動量與轉動慣量 第三節 角動量守恆.
Fundamentals of Physics 8/e 28 - Magnetic Force
普通物理 General Physics 22 - Finding the Electric Field-I
Short Version : 5. Newton's Laws Applications 短版: 5. 牛頓定律的應用
Fundamentals of Physics 8/e 25 - Capacitors and Capacitance
Neutron Stars and Black Holes 中子星和黑洞
Fundamentals of Physics 8/e 30 - Inductance
Fundamentals of Physics 8/e 0 – Table of Contents
普通物理 General Physics 21 - Coulomb's Law
行星運動 人類對天體的運行一直充滿著好奇與幻想,各式各樣的傳說與理論自古即流傳於各地。在這些論述中,不乏各式神鬼傳說與命運註解,也包含了許多爭論不休的學術觀點。雖然這些形而上的虛幻傳奇仍然流傳於坊間,但是科學上的爭執卻因牛頓重力理論(law of gravitation)的出現而大致底定。
Mechanics Exercise Class Ⅰ
Summary for Chapters 24 摘要: 24章
Chapter 10 : Balance of Machinery
科學遊戲實作_SM的魔法教室 私立協同中學物理教師 何世明.
第一章 力和运动 §1-1 质点运动的描述 §1-2 圆周运动和一般曲线运动 §1-3 相对运动 常见力和基本力 §1-4 牛顿运动定律
物體的運動包含質心的運動與繞質心的轉動:
运动学 第一章 chapter 1 kinematices.
12. Static Equilibrium 靜力平衡
Q & A.
Summary : 3. Motion in 2- & 3-D 摘要: 3. 二及三維運動
Part One: Mechanics 卷一:力學
计算机问题求解 – 论题1-5 - 数据与数据结构 2018年10月16日.
Mechanics Exercise Class Ⅱ
Fundamentals of Physics 8/e 21 - Coulomb's Law
Fundamentals of Physics 8/e 22 - Finding the Electric Field-I
动词不定式(6).
發表於2005物理教學示範暑期研討會,國立清華大學物理系主辦 (2005/8/25~26)
12. Static Equilibrium 靜力平衡
句子成分的省略(3).
Summary : 2. Motion In A Straight Line 摘要: 2. 直線運動
簡單迴歸分析與相關分析 莊文忠 副教授 世新大學行政管理學系 計量分析一(莊文忠副教授) 2019/8/3.
Summary : 4. Newton's Laws 摘要: 4. 牛頓定律
Principle and application of optical information technology
Presentation transcript:

普通物理 General Physics 10 - Rotational Motion I 郭艷光Yen-Kuang Kuo 國立彰化師大物理系暨光電科技研究所 電子郵件: ykuo@cc.ncue.edu.tw 網頁: http://ykuo.ncue.edu.tw

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Outline 10-1 What Is Physics? 10-2 The Rotational Variables 10-3 Are Angular Quantities Vectors? 10-4 Rotation with Constant Angular Acceleration 10-5 Relating the Linear and Angular Variables 10-6 Kinetic Energy of Rotation 10-7 Calculating the Rotational Inertia 10-8 Torque 10-9 Newton’s Second Law for Rotation 10-10 Work and Rotational Kinetic Energy 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 10-1 What Is Physics? In this chapter, we will study the rotational motion of rigid bodies about a fixed axis. We will also calculate the kinetic energy associated with rotation, write Newton’s second law for rotational motion, and introduce the work-kinetic energy for rotational motion. 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

10-2 The Rotational Variables Reference line: Fixed in the body, perpendicular to the rotation axis and rotating with the body. Angular Position : (Radian measure) 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

10-2 The Rotational Variables An angle defined in this way is measured in radians (rad) rather than in revolutions (rev) or degrees. 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

10-2 The Rotational Variables Angular Displacement : An angular displacement in the counterclockwise direction is positive, and one in the clockwise direction is negative. 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

10-2 The Rotational Variables Average Angular Velocity: Instantaneous Angular Velocity: : angular position t : angular position The magnitude of an angular velocity is called the angular speed. SI unit: radians/second 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

10-2 The Rotational Variables Average Angular Acceleration: Instantaneous Angular Acceleration: is the change in the angular velocity that occurs during the time interval . SI unit: radians/second2 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-1 (a) The disk is rotating about its central axis like a merry-go- round. The angular position of a reference line on the disk is given by , with t in seconds, in radians, and the zero angular position as indicated in the figure. Graph the angular position of the disk versus time from t = ̶ 3.0 s to t = 5.4 s. 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-1 (a) Sketch the disk and its angular position reference line at t = 2.0 s, 0 s, and 4.0 s, and when the curve crosses the t axis. Solution: 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-1 (a) 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-1 (b) At what time tmin does reach the minimum value shown in figure of page 10? What is that minimum value? Solution: 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-1 (c) Graph the angular velocity of the disk versus time from t = 3.0 s to t = 6.0 s. Sketch the disk and indicate the direction of turning and the sign of at t = 2.0 s, 4.0 s, and tmin. Solution: 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-1 (c) 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-1 (d) Use the results in parts (a) through (c) to describe the motion of the disk from t = 3.0 s to t = 6.0 s. Solution: 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-2 (a) A child’s top is spun with angular acceleration with t in seconds and α in radians per second-squared. At t = 0, the top has angular velocity 5 rad/s, and a reference line on it is at angular position θ= 2 rad. Obtain an expression for angular velocity of the top. 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-2 (a) Solution: 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-2 (b) Obtain an expression for the angular position of the top. Solution: 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

10-3 Are Angular Quantities Vectors? The direction of the ( vector ) angular velocity is given by the right-hand rule. 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

10-4 Rotation with Constant Angular Acceleration Translational Motion Rotational Motion 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

10-4 Rotation with Constant Angular Acceleration When the angular acceleration is constant, from and integrate We use , and again integrate And we find 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-3 (a) A grindstone rotates at constant angular acceleration α= 0.35 rad/s2. At time t = 0, it has an angular velocity of = ̶ 4.6 rad/s and a reference line on it is horizontal, at the angular position . At what time after t = 0 is the reference line at the angular position = 5.0 rev? 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-3 (a) Solution: 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-3 (b) Describe the grindstone’s rotation between t = 0 and t = 32 s. Solution: The wheel slows in its rotation in the negative direction. 2. Then reverses to rotate in the positive direction. 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-3 (c) At what time t does the grindstone momentarily stop? Solution: 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-4 (a) While you are operating a Rotor ( Sample Problem 6-8 ), you spot a passenger in acute distress and decrease the angular speed of the cylinder from 3.40 rad/s to 2.00 rad/s in 20.0 rev, at constant angular acceleration. What is the constant angular acceleration during this decrease in angular speed? 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-4 (a) Solution: 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-4 (b) How much time did the speed decrease take? Solutions: 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

10-5 Relating the Linear and Angular Variables The Position: A rigid body rotates through an angle , a point within the body at a position r from the rotation axis moves a distance s along a circular arc, (radian measure) 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

10-5 Relating the Linear and Angular Variables The Speed: Differentiating with respect to time — with r held constant —leads to (radian measure) 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

10-5 Relating the Linear and Angular Variables The Acceleration: The tangential ( linear ) acceleration at The centripetal acceleration ar α: instantaneous angular acceleration 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-5 (a) We are to design the track for an induction roller coaster (which can be accelerated by magnetic forces even on a horizontal track). To create an initial thrill, we want each passenger to leave the loading point with acceleration g along the horizontal track. To increase the thrill, we also want that first section of track to form a circular arc, so that the passenger also experiences a 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-5 (a) centripetal acceleration. As the passenger accelerates along the arc, the magnitude of this centripetal acceleration increases alarmingly. When the magnitude a of the net acceleration reaches 4g at some point P and angle along the arc, we want the passenger then to move in a straight line, along a tangent to the arc. What angle 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-5 (a) should the arc subtend so that a is 4g at point P? Solution: 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-5 (b) What is the magnitude a of the passenger’s net acceleration at point P and after point P? Solution: 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

10-6 Kinetic Energy of Rotation ( rotational inertia ) 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

10-7 Calculating the Rotational Inertia 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

10-7 Calculating the Rotational Inertia Parallel-Axis Theorem: Let h be the perpendicular distance between the given axis and the axis through the center of mass (remember these two axes must be parallel). Then the rotational inertia I about the given axis is 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

10-7 Calculating the Rotational Inertia Proof of Parallel-Axis Theorem: 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-6 (a) A rigid body consisting of two particles of mass m connected by a rod of length L and negligible mass. What is the rotational inertia Icom about an axis through the center of mass, perpendicular to the rod as shown? 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-6 (a) Solution: 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-6 (b) What is the rotational inertia I of the body about an axis through the left end of the rod and parallel to the first axis? Solution: 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-7 Four point masses lie at the corners of a rectangle with sides of length 3 m and 4 m. Find the moment of inertia about each of diagonals. Take M = 1 kg. 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-7 Solution: For each axis, two masses do not contribute to the moment of inertia. The other two are at the same distance 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-8 (a) A thin, uniform rod of mass M and length L, on an x axis with the origin at the rod’s center. What is the rotational inertia of the rod about the perpendicular rotation axis through the center? 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-8 (a) Solution: 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-8 (b) What is the rod’s rotational inertia I about a new rotation axis that is perpendicular to the rod and through the left end? Solution: 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-9 A solid sphere and a disk are released from the same point on an incline. Given that they roll without slipping, which has the greater speed at the bottom? Ignore dissipative effects. 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-9 Solution: 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 10-8 Torque The torque of a force F that acts at a distance r from the origin is defined to be ( : Lever arm ) 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

10-9 Newton’s Second Law for Rotation By analogy with Newton’s second law ( Fnet = ma ) for the acceleration a of a body of mass m due to a net force Fnet along a coordinate axis. We replace Fnet with , m with I, and a with , writing ( Newton’s second law for rotation ) 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

10-9 Newton’s Second Law for Rotation Proof of Equation: 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-10 A uniform disk, with mass M = 2.5 kg and radius R = 20 cm, mounted on a fixed horizontal axle. A block with mass m = 1.2 kg hangs from a massless cord that is wrapped around the rim of the disk. Find the acceleration of the falling block, the angular acceleration of the disk, and the tension in the cord. The cord 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-10 does not slip, and there is no friction at the axle. Solution: 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-11 (a) A sphere of mass M and radius R that rolls without slipping down an incline. Its moment of inertia about a central axis is 0.4 MR2 . Find the linear acceleration of the CM. 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-11 (a) Solution: 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-11 (b) What is the minimum coefficient of friction required for the sphere to roll without slipping? Solution: 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

10-10 Work and Rotational Kinetic Energy Work And Kinetic Energy Theorem: A torque acts a rigid body in rotation, the body’s rotational kinetic energy can change. If is the torque, then we can have ( : body’s angular position ) 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

10-10 Work and Rotational Kinetic Energy Rate at which the work is done is the power The similarities in the equations for general and rotational motion: ( power, rotation about fixed axis ) General Rotation 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

10-10 Work and Rotational Kinetic Energy Proof of Equations: 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

10-10 Work and Rotational Kinetic Energy 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-12 Let the disk in Example 10-10 start from rest at time t = 0. What is its rotational kinetic energy K at t = 2.5 s? Solution: 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-13 A tall, cylindrical chimney will fall over when its base is ruptured. Treat the chimney as a thin rod of length L = 55.0 m. At the instant it makes an angle of θ= 35.0° with the vertical, what is its angular speed ? 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-13 Solution: 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-13 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 Example 10-14 A motor rotates a pulley of radius 25 cm at 20 rpm. A rope around the pulley lifts a 50- kg block. What is the power output of the motor? Solution: 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授 End of chapter 10! 2018/12/5 普通物理講義-10 / 國立彰化師範大學物理系/ 郭艷光教授