Advisor : Cheng-Chien Wang Reporter : Jia-Hong Su Advisor : Cheng-Chien Wang Date : 2015-09-25
Outline 1. Introduction 2. Experimental 3. Results and discussion 4. Conclusion
Introduction Catalysis Photonics Electronics Biosensors NH2 COO- Chemical stability Physical stability PS Au3+
Materials Hydrochloroauric acid tetrahydrate Sodium citric dihydrate St:Styrene KPS:Potassium Perdisulfate SDS:Sodium dodecyl sulfate 3-Aminopropyltrimethoxysilane 4-nitrophenol Sodium citrate
Experimental +H3N H2N St 1ml SDS 0.0222g KPS 0.0244 H2O/EtOH 20ml/50ml Temperature 70 °C Time 8 h Amine-modified PS 20ml HAuCl4 (1 wt.%) 0.8ml Sodium citrate (1 wt.%) 0.32ml NaBH4(0.3M) 0.15ml PS 20mg EtOH 20ml ATPES(2%) 0.4ml Temperature 25 °C Time 2 h H2O 20ml Time 20h PS 300nm
Experimental Scheme 1.Synthesis process of the PS/Au core–shell nanocomposites
Results and discussion
Results and discussion Fig. 1.(a) TEM image for the naked PS microspheres with the diameter around 300 nm. (b and c) TEM and SEM images of the PS/Au core–shell nanocomposite (sample S0), and (d) HRTEM image of Au NPs, and the inner image is the IFFT image
Results and discussion Fig. 2.TEM images of the PS/Au core–shell nanocomposites prepared using 0.2 ml HAuCl4under different volume of APTES solution:VAPTES= 0.1 ml (a and b), 0.4 ml (c and d),and 0.6 ml (e and f).
Results and discussion Fig. 3.TEM images of the PS/Au core–shell nanocomposites prepared with 0.8 ml HAuCl4under different modified time:TAPTES= 0 (a), 0.5 (b), and 2 h (c)
Results and discussion Tp=5h Tp=30h Fig. 4.TEM images of the PS/Au core–shell nanocomposite prepared using 0.2 ml HAuCl4under the protonation time:Tp=5h.
Results and discussion Fig. 5.(A) TEM images of the size controllable PS/Au core–shell nanocomposites under various volumes of the HAuCl4solution:Vca= 0.2 (a and b), 0.3 (c and d), 0.4 (e and f), and 0.8 ml (g and h). (B) Histograms of the size distributions of the corresponding Au NPs on the PS spheres.
Results and discussion 550 nm to 567 nm Fig. 6.UV–vis spectra for the PS/Au core–shell nanocomposites with corresponding Vca= 0.2, 0.3, 0.4, 0.8 ml.
Results and discussion 315nm 400nm Fig. 7.Successive UV–vis absorption spectra of the reduction of 4-nitrophenol by NaBH4without PS/Au nanocomposites.
Results and discussion Size Efficiency Fig. 8.Time evolution UV–vis spectra for monitoring the reduction of –NO2group into –NH2 group, under the catalysis by the PS/Au core–shell nanocomposites prepared usingVca= 0.2 (a), 0.3 (b), 0.4 (c), 0.8 (d) ml HAuCl4
Conclusions The report a facile method for the controllable synthesis of hierarchical PS/Au core–shell nanocomposites by the ionic self-assembly combined with in site reduction. The parameters for the synthesis, such as the amount of APTES, the functionalization time, the protonation time and the amount of HAuCl4, were systematically explored ,Under appropriate parameters, the Au NPs with controllable size are well-dispersed on the surface of PS spheres.
Advisor : Cheng-Chien Wang 進度報告 製備導電高分子顆粒和胺基官能基 Reporter : Jia-Hong Su Advisor : Cheng-Chien Wang Date : 2015-09-03
Experimental 利用分散聚合聚合出P(PS-GMA-IDA)顆粒 Ag+ 溶液(H2O) 100ml EDTA 0.7g 溶劑(乙醇/異丙醇/水) 100ml/50ml/50ml St/GMA-IDA 10ml/5ml 起始劑/分散劑 0.5g/1g 機械攪拌 300rpm 溫度 70oC 溶液(H2O) 100ml EDTA 0.7g AgNO3 0.8g P(PS-GMA-IDA) 0.6g 利用NaOH鹼洗P(PS-GMA-IDA)顆粒 P(PS-GMA-IDA) 將顆粒利用無電電鍍鍍銀 接枝胺基
Experimental 將鍍銀顆粒分散於乙醇溶液,並通入氮氣 通入氮氣20分鐘後加入胺基硫醇 溶液(EtOH) 200ml 胺基硫醇 0.7g
Results and discussion 胺基硫醇溶於不同溶劑IR圖 νNH2
Results and discussion 利用熱分析計算胺基硫醇添加量 硝酸銀Mw:170g/mol 胺基硫醇Mw:77g/mol 總重6.37g鍍銀顆粒,經熱分析後剩餘45.05% 6.37mg*45.05%=2.87mg 得到顆粒銀鍍層的重量,計算需要多少胺基硫醇接枝 2.87mg/170g/mol=0.016mmol(鍍上顆粒之銀毫莫耳數) 0.016*77=1.3mg(為所需胺基硫醇克數) 800oC 45.05% 鍍銀顆粒STA圖
Experimental GMA(Mw:142) 50ml 四乙烯戊胺(aq) (Mw:189) 混和GMA和四乙烯戊胺,待混和溶液呈均一相
Experimental 將溶劑與分散劑,單體混和為 均一相並機械攪拌 分散聚合過程 通氮氣25分鐘,升溫70oC 加入起始劑 溶劑(乙醇/異丙醇/水) 100ml/50ml/50ml St/GMA-amino 10ml/5ml 起始劑/分散劑 0.5g/1g 機械攪拌 300rpm 溫度 70oC 通氮氣25分鐘,升溫70oC 加入起始劑 反應8小時後結束反應 純化PS顆粒
Experimental