机器人学基础 第四章 机器人动力学 Fundamentals of Robotics Ch.4 Manipulator Dynamics

Slides:



Advertisements
Similar presentations
1 Field and Wave Electromagnetics Edited by David K. Cheng.
Advertisements

Chapter 3 動力學 DYNAMICS 1.動力學 研究力與運動物理量的關係。 運動學相關物理量 動力學 力相關物理量 力 動量 動能
第2章 质点动力学 Chap.2 Kinetics.
第二章 运动的守恒量和守恒定律 §2-1 质点系的内力和外力 质心 质心运动定理 §2-2 动量定理 动量守恒定律
第三章 二次量子化之基礎理論.
自然運動 伽利略在運動學上的成就,奠定了牛頓動力學的基礎。伽利略成功的描述地球上物體的拋物運動,其主要基於兩個基本概念:
A TIME-FREQUENCY ADAPTIVE SIGNAL MODEL-BASED APPROACH FOR PARAMETRIC ECG COMPRESSION 14th European Signal Processing Conference (EUSIPCO 2006), Florence,
3-3 Modeling with Systems of DEs
Euler’s method of construction of the Exponential function
Differential Equations (DE)
广义相对论课堂5 引力红移/时间膨胀检验和推论
D. Halliday, R. Resnick, and J. Walker
位移與向量(Displacement and Vector)
4. Newton's Laws 牛頓定律 The Wrong Question 問錯題
高中資優計畫物理實驗 --高一下學期(2005) 古煥球(物理館101室) 講解及實驗時間: 星期六下午1:00-4:00 (三小時) 講解室: 物理館019室 實驗室: 綜三館普物實驗室(助教負責) 實驗課本: 清華大學[普通物理實驗課本] + 講義.
On Some Fuzzy Optimization Problems
普通物理 General Physics 11 - Rotational Motion II 郭艷光Yen-Kuang Kuo
Ch.2 Modeling in the Frequency Domain
普通物理 General Physics 8 – Conservation of Energy
Ch2 Infinite-horizon and Overlapping- generations Models (无限期与跨期模型)
第五章 剛體運動 當我們不再考慮物體為一質點,而是一有限大小的實體時,以粒子為考量中心所推論出的運動定律將不再足以描述此物體的運動狀態與變化。
電子儀器與量測技術 光譜量測 演講者:楊仲準 中原大學物理系.
Fundamentals of Physics 8/e 27 - Circuit Theory
附加内容 “AS”用法小结(1).
光流法 (Optical Flow) 第八章 基于运动视觉的稠密估计 光流法 (Optical Flow)
Mechanisms and Machine Theory.
Short Version : 6. Work, Energy & Power 短版: 6. 功,能和功率
普通物理 General Physics 9 - Center of Mass and Momentum
普通物理 General Physics 10 - Rotational Motion I
Special English for Industrial Robot
線性一階微分方程與尤拉法 線性一階微分方程式求解 (Linear First-Order Differential Equations)
边界条件/CFX表达式语言 讲座 3.
Fundamentals of Physics 8/e 29 - Current-Produced Magnetic Field
普通物理 General Physics 29 - Current-Produced Magnetic Field
Short Version :. 11. Rotational Vectors & Angular Momentum 短版:. 11
平面任意力系 (Coplanar Force System)
子博弈完美Nash均衡 我们知道,一个博弈可以有多于一个的Nash均衡。在某些情况下,我们可以按照“子博弈完美”的要求,把不符合这个要求的均衡去掉。 扩展型博弈G的一部分g叫做一个子博弈,如果g包含某个节点和它所有的后继点,并且一个G的信息集或者和g不相交,或者整个含于g。 一个Nash均衡称为子博弈完美的,如果它在每.
普通物理 General Physics 22 - Finding the Electric Field-I
Short Version : 5. Newton's Laws Applications 短版: 5. 牛頓定律的應用
Neutron Stars and Black Holes 中子星和黑洞
机器人学基础 第六章 机器人传感器 Fundamentals of Robotics Ch.6 Robot Sensors 中南大学
Fundamentals of Physics 8/e 0 – Table of Contents
行星運動 人類對天體的運行一直充滿著好奇與幻想,各式各樣的傳說與理論自古即流傳於各地。在這些論述中,不乏各式神鬼傳說與命運註解,也包含了許多爭論不休的學術觀點。雖然這些形而上的虛幻傳奇仍然流傳於坊間,但是科學上的爭執卻因牛頓重力理論(law of gravitation)的出現而大致底定。
Mechanics Exercise Class Ⅰ
每周三交作业,作业成绩占总成绩的15%; 平时不定期的进行小测验,占总成绩的 15%;
Summary for Chapters 24 摘要: 24章
Chapter 10 : Balance of Machinery
动词不定式(3).
96學年度第一學期電機系教學助理課後輔導進度表(一)
第一章 力和运动 §1-1 质点运动的描述 §1-2 圆周运动和一般曲线运动 §1-3 相对运动 常见力和基本力 §1-4 牛顿运动定律
物體的運動包含質心的運動與繞質心的轉動:
运动学 第一章 chapter 1 kinematices.
普通物理 施明智 阮俊人 教科書: University Physics 11th Edition By Young & Freedman.
12. Static Equilibrium 靜力平衡
2 滾動、力矩角、動量.
Q & A.
運動的物理.
Summary : 3. Motion in 2- & 3-D 摘要: 3. 二及三維運動
Part One: Mechanics 卷一:力學
在運動過程中,粒子在每一特定時間對應一特定位置:位置是時間的函數!
最短通路问题.
Mechanics Exercise Class Ⅱ
Ideal Gas.
12. Static Equilibrium 靜力平衡
Short Version : 8. Gravity 短版: 8. 重力
句子成分的省略(3).
Lecture #10 State space approach.
Summary : 4. Newton's Laws 摘要: 4. 牛頓定律
Electromagnetic properties of light nuclei
Principle and application of optical information technology
Presentation transcript:

中南大学 蔡自兴,谢 斌 zxcai, xiebin@mail.csu.edu.cn 2010 机器人学基础 第四章 机器人动力学 Fundamentals of Robotics Ch.4 Manipulator Dynamics 中南大学 蔡自兴,谢 斌 zxcai, xiebin@mail.csu.edu.cn 2010 1 Fundamentals of Robotics

Contents  Introduction to Dynamics  Rigid Body Dynamics  Lagrangian Formulation  Newton-Euler Formulation  Articulated Multi-Body Dynamics 2 Ch.4 Manipulator Dynamics

Ch.4 Manipulator Dynamics Introduction Manipulator Dynamics considers the forces required to cause desired motion. Considering the equations of motion arises from torques applied by the actuators, or from external forces applied to the manipulator. 3 Ch.4 Manipulator Dynamics

Ch.4 Manipulator Dynamics Two methods for formulating dynamics model: Newton-Euler dynamic formulation Newton's equation along with its rotational analog, Euler's equation, describe how forces, inertias, and accelerations relate for rigid bodies, is a "force balance" approach to dynamics. Lagrangian dynamic formulation Lagrangian formulation is an "energy-based" approach to dynamics. Ch.4 Manipulator Dynamics

Ch.4 Manipulator Dynamics There are two problems related to the dynamics of a manipulator that we wish to solve. Forward Dynamics: given a torque vector, Τ, calculate the resulting motion of the manipulator, . This is useful for simulating the manipulator. Inverse Dynamics: given a trajectory point, , find the required vector of joint torques, Τ. This formulation of dynamics is useful for the problem of controlling the manipulator. Ch.4 Manipulator Dynamics

Contents  Introduction to Dynamics  Rigid Body Dynamics  Lagrangian Formulation  Newton-Euler Formulation  Articulated Multi-Body Dynamics 6 Ch.4 Manipulator Dynamics

4.1 Dynamics of a Rigid Body 刚体动力学 Langrangian Function L is defined as: Dynamic Equation of the system (Langrangian Equation): where qi is the generalized coordinates, represent corresponding velocity, Fi stand for corresponding torque or force on the ith coordinate. Kinetic Energy Potential Energy 7 4.1 Dynamics of a Rigid Body

4.1.1 Kinetic and Potential Energy of a Rigid Body 4.1 Dynamics of a Rigid Body 4.1.1 Kinetic and Potential Energy of a Rigid Body 图4.1 一般物体的动能与位能 8 4.1 Dynamics of a Rigid Body

is a generalized coordinate 4.1.1 Kinetic and Potential Energy of a Rigid Body is a generalized coordinate ① Kinetic Energy due to (angular) velocity ② Kinetic Energy due to position (or angle) ③ Dissipation Energy due to (angular) velocity ④ Potential Energy due to position ⑤ External Force or Torque ① ② ③ ④ ⑤ 9 4.1 Dynamics of a Rigid Body

4.1.1 Kinetic and Potential Energy of a Rigid Body x0 and x1 are both generalized coordinates Written in Matrices form: 10 4.1 Dynamics of a Rigid Body

4.1.1 Kinetic and Potential Energy of a Rigid Body Kinetic and Potential Energy of a 2-links manipulator 图4.2 二连杆机器手(1) Kinetic Energy K1 and Potential Energy P1 of link 1 11 4.1 Dynamics of a Rigid Body

4.1.1 Kinetic and Potential Energy of a Rigid Body Kinetic Energy K2 and Potential Energy P2 of link 2 where 12 4.1 Dynamics of a Rigid Body

4.1.1 Kinetic and Potential Energy of a Rigid Body Total Kinetic and Potential Energy of a 2-links manipulator are 13 4.1 Dynamics of a Rigid Body

Contents  Introduction to Dynamics  Rigid Body Dynamics  Lagrangian Formulation  Newton-Euler Formulation  Articulated Multi-Body Dynamics 14 Ch.4 Manipulator Dynamics

4.1.2 Two Solutions for Dynamic Equation Lagrangian Formulation Lagrangian Function L of a 2-links manipulator: 15 4.1 Dynamics of a Rigid Body

4.1.2 Two Solutions for Dynamic Equation Lagrangian Formulation Dynamic Equations: Written in Matrices Form: 有效惯量(effective inertial):关节i的加速度在关节i上产生的惯性力 16 4.1 Dynamics of a Rigid Body

耦合惯量(coupled inertial):关节i,j的加速度在关节j,i上产生的惯性力 4.1.2 Two Solutions for Dynamic Equation Lagrangian Formulation Dynamic Equations: Written in Matrices Form: 耦合惯量(coupled inertial):关节i,j的加速度在关节j,i上产生的惯性力 17 4.1 Dynamics of a Rigid Body

4.1.2 Two Solutions for Dynamic Equation Lagrangian Formulation Dynamic Equations: 向心加速度(acceleration centripetal)系数关节i,j的速度在关节j,i上产生的向心力 Written in Matrices Form: 18 4.1 Dynamics of a Rigid Body

4.1.2 Two Solutions for Dynamic Equation Lagrangian Formulation Dynamic Equations: 哥氏加速度(Coriolis accelaration)系数: 关节j,k的速度引起的在关节i上产生的哥氏力(Coriolis force) Written in Matrices Form: 19 4.1 Dynamics of a Rigid Body

重力项(gravity):关节i,j处的重力 4.1.2 Two Solutions for Dynamic Equation Lagrangian Formulation Dynamic Equations: Written in Matrices Form: 重力项(gravity):关节i,j处的重力 20 4.1 Dynamics of a Rigid Body

对上例指定一些数字,以估计此二连杆机械手在静止和固定重力负载下的 T1 和 T2 的数值。 Lagrangian Formulation of Manipulator Dynamics 对上例指定一些数字,以估计此二连杆机械手在静止和固定重力负载下的 T1 和 T2 的数值。 取 d1=d2=1,m1=2,计算m2=1,4和100(分别表示机械手在地面空载、地面满载和在外空间负载的三种不同情况;在外空间由于失重而允许有较大的负载)三个不同数值下各系数的数值。 21 4.1 Dynamics of a Rigid Body

注意:有效惯量的变化将对机械手的控制产生显著影响! Lagrangian Formulation of Manipulator Dynamics 注意:有效惯量的变化将对机械手的控制产生显著影响! 表4.1给出这些系数值及其与位置 的关系。 表4.1 负载 地面空 载 0 90 180 270 1 -1 6 4 2 3 地面满载 18 10 8 外空间负载 402 202 200 100 102 22 4.1 Dynamics of a Rigid Body

Contents  Introduction to Dynamics  Rigid Body Dynamics  Lagrangian Formulation  Newton-Euler Formulation  Articulated Multi-Body Dynamics 23 Ch.4 Manipulator Dynamics

4.1.2 Two Solutions for Dynamic Equation Newton-Euler Dynamic Formulation Newton’s Law rate of change of the linear momentum is equal to the applied force Linear Momentum 4.1 Dynamics of a Rigid Body

4.1.2 Two Solutions for Dynamic Equation Newton-Euler Dynamic Formulation Rotational Motion Angular Momentum 4.1 Dynamics of a Rigid Body

4.1.2 Two Solutions for Dynamic Equation Newton-Euler Dynamic Formulation Rotational Motion Angular Momentum Inertia Tensor 4.1 Dynamics of a Rigid Body

4.1.2 Two Solutions for Dynamic Equation Newton-Euler Dynamic Formulation (Newton Equation) (Euler Equation) where m is the mass of a rigid body, represent inertia tensor, FC is the external force on the center of gravity, N is the torque on the rigid body, vC represent the translational velocity, while ω is the angular velocity. 4.1 Dynamics of a Rigid Body

4.1.2 Two Solutions for Dynamic Equation 例1. 求解下图所示的1自由度机械手的运动方程式,在这里,由于关节轴制约连杆的运动,所以可以将运动方程式看作是绕固定轴的运动。 解:假设绕关节轴的惯性矩为 I,取垂直纸面的方向为 z 轴,则有 1自由度机械手 4.1 Dynamics of a Rigid Body

4.1.2 Two Solutions for Dynamic Equation 由欧拉运动方程式 该式即为1自由度机械手的欧拉运动方程式。 4.1 Dynamics of a Rigid Body

4.1.2 Two Solutions for Dynamic Equation Langrangian Function L is defined as: Dynamic Equation of the system (Langrangian Equation): where qi is the generalized coordinates, represent corresponding velocity, Fi stand for corresponding torque or force on the ith coordinate. Kinetic Energy Potential Energy 30 4.1 Dynamics of a Rigid Body

4.1.2 Two Solutions for Dynamic Equation 例2.通过拉格朗日运动方程式求解之前推导的1自由度机械手。 解:假设θ为广义坐标,则有 由拉格朗日运动方程 4.1 Dynamics of a Rigid Body

4.1.2 Two Solutions for Dynamic Equation 我们研究动力学的重要目的之一是为了对机器人的运动进行有效控制,以实现预期的轨迹运动。常用的方法有牛顿—欧拉法、拉格朗日法等。 牛顿—欧拉动力学法是利用牛顿力学的刚体力学知识导出逆动力学的递推计算公式,再由它归纳出机器人动力学的数学模型——机器人矩阵形式的运动学方程; 拉格朗日法是引入拉格朗日方程直接获得机器人动力学方程的解析公式,并可得到其递推计算方法。 4.1 Dynamics of a Rigid Body

4.1.2 Two Solutions for Dynamic Equation 对多自由度的机械手,拉格朗日法可以直接推导运动方程式,但随着自由度的增多演算量将大量增加。 与此相反,牛顿-欧拉法着眼于每一个连杆的运动,即便对于多自由度的机械手其计算量也不增加,因此算法易于编程。由于推导出的是一系列公式的组合,要注意惯性矩阵等的选择和求解问题。 进一步的问题请参考相关文献资料。 4.1 Dynamics of a Rigid Body

Contents  Introduction to Dynamics  Rigid Body Dynamics  Lagrangian Formulation  Newton-Euler Formulation  Articulated Multi-Body Dynamics 34 Ch.4 Manipulator Dynamics

4.2 Dynamic Equation of a Manipulator 机械手的动力学方程 Forming dynamic equation of any manipulator described by a series of A-matrices: (1) Computing the Velocity of any given point; (2) Computing total Kinetic Energy; (3) Computing total Potential Energy; (4) Forming Lagrangian Function of the system; (5) Forming Dynamic Equation through Lagrangian Equation. 35 4.2 Dynamic Equation of a Manipulator

4.2.1 Computation of Velocity 速度的计算 图4.4 四连杆机械手 Velocity of point P on link-3: Velocity of any given point on link-i: 36 4.2 Dynamic Equation of a Manipulator

4.2.1 Computing the Velocity 图4.4 四连杆机械手 Acceleration of point P: 37 4.2 Dynamic Equation of a Manipulator

4.2.1 Computing the Velocity 图4.4 四连杆机械手 Square of velocity The trace of an square matrix is defined to be the sum of the diagonal elements. 38 4.2 Dynamic Equation of a Manipulator

4.2.1 Computing the Velocity 图4.4 四连杆机械手 Square of velocity of any given point: 39 4.2 Dynamic Equation of a Manipulator

4.2.2 Computation of Kinetic and Potential Energy 动能和位能的计算 图4.4 四连杆机械手 Computing the Kinetic Energy 令连杆3上任一质点P的质量为dm,则其动能为: 40 4.2 Dynamic Equation of a Manipulator

4.2.2 Computation of Kinetic and Potential Energy Kinetic Energy of any particle on link-i with position vector ir : Kinetic Energy of link-3: 41 4.2 Dynamic Equation of a Manipulator

Kinetic Energy of any given link-i: 4.2.2 Computation of Kinetic and Potential Energy Kinetic Energy of any given link-i: Total Kinetic Energy of the manipulator: 42 4.2 Dynamic Equation of a Manipulator

Computing the Potential Energy 4.2.2 Computation of Kinetic and Potential Energy Computing the Potential Energy Potential Energy of a object (mass m) at h height: so the Potential Energy of any particle on link-i with position vector ir : where 43 4.2 Dynamic Equation of a Manipulator

Potential Energy of any particle on link-i with position vector ir : 4.2.2 Computation of Kinetic and Potential Energy Potential Energy of any particle on link-i with position vector ir : Total Potential Energy of the manipulator: 44 4.2 Dynamic Equation of a Manipulator

4.2.3 Forming the Dynamic Equation 动力学方程的推导 Lagrangian Function 45 4.2 Dynamic Equation of a Manipulator

4.2.3 Forming the Dynamic Equation Derivative of Lagrangian function 46 4.2 Dynamic Equation of a Manipulator

4.2.3 Forming the Dynamic Equation According to Eq.(4.18), Ii is a symmetric matrix, lead to 47 4.2 Dynamic Equation of a Manipulator

4.2.3 Forming the Dynamic Equation 48 4.2 Dynamic Equation of a Manipulator

4.2.3 Forming the Dynamic Equation 49 4.2 Dynamic Equation of a Manipulator

4.2.3 Forming the Dynamic Equation Dynamic Equation of a n-link manipulator: 注意:上述惯量项与重力项在机械手的控制中特别重要,它们将直接影响到机械手系统的稳定性和定位精度。只有当机械手高速运动时,向心力和哥氏力才变得重要。 50 4.2 Dynamic Equation of a Manipulator

4.3 Summary 小结 Two methods to form dynamic equation of a rigid body: Lagrangian Equation (Energy-based) Newton-Euler Equation (Force-balance) Summarize steps to form Lagrangian Equation of n-link manipulators: Computing the Velocity of any given point; Computing total Kinetic Energy; Computing total Potential Energy; Forming Lagrangian Function of the system; Forming Dynamic Equation through Lagrangian Equation. 51 4.3 Summary