4-4 Undetermined Coefficients – Superposition Approach

Slides:



Advertisements
Similar presentations
Chapter 2 Combinatorial Analysis 主講人 : 虞台文. Content Basic Procedure for Probability Calculation Counting – Ordered Samples with Replacement – Ordered.
Advertisements

1 Lecture 5 Properties of LTI Systems The Solution of LCCDE.
工 程 數 學 第二章 二階微分方程式. 2-1 基本概念 二階微分方程式  最高微分為二次 例 二階微分方程式的解:
663 Chapter 14 Integral Transform Method Integral transform 可以表示成如下的積分式的 transform  kernel Laplace transform is one of the integral transform 本章討論的 integral.
楊學成 老師 Chapter 1 First-order Differential Equation.
-CHINESE TIME (中文时间): Free Response idea: 你周末做了什么?
微積分 精華版 Essential Calculus
避開鳥事、走好運! 懂卜卦的人,一輩子不吃虧!
Chap. 4 Techniques of Circuit Analysis
Chapter 8 Liner Regression and Correlation 第八章 直线回归和相关
Differential Equations (DE)
XI. Hilbert Huang Transform (HHT)
工程數學 Chapter 12 PDE 楊學成 老師.
Chapter three the Z Transform Z 变换
3-3 Modeling with Systems of DEs
Euler’s method of construction of the Exponential function
-Artificial Neural Network- Adaline & Madaline
IV. Implementation IV-A Method 1: Direct Implementation 以 STFT 為例
期末考的範圍遠遠多於期中考,要了解的定理和觀念也非常多
Linear Programming: Introduction and Duality
附錄一 Methods of Solving the First Order Differential Equation
Section 7-4 Operational Properties II
Section 7-2 Inverse Transforms and Transforms of Derivatives
第二章 二階及高階常微分方程式 齊次二階線性ODE 線性 y‘’ + p(x)y‘+g(x)y = r(x) ◎對於未知變數 y,其於方程式中各項係數(含其導數之係 數)值為x之方程式。 齊次 r(x) = 0 y‘’ + p(x)y‘+g(x)y = 0.
7.1 兩曲線間的面積 7.2 體積:圓盤法 7.3 體積:圓柱殼法 7.4 弧長和旋轉面
模式识别 Pattern Recognition
Differential Equations (DE)
Differential Equations (DE)
Differentiation 微分 之二 以公式法求函數的微分.
Chapter 4 歸納(Induction)與遞迴(Recursion)
Chapter 12 Boundary-Value Problem in Rectangular Coordinates
Chapter 11 Orthogonal Functions and
非線性規劃 Nonlinear Programming
On Some Fuzzy Optimization Problems
期末考的範圍遠遠多於期中考,要了解的定理和觀念也非常多
期末考的範圍遠遠多於期中考,要了解的定理和觀念也非常多
Ch2 Infinite-horizon and Overlapping- generations Models (无限期与跨期模型)
Properties of Continuous probability distributions
Sampling Theory and Some Important Sampling Distributions
Chapter 14 Integral Transform Method
第二十九單元 方向導數與梯度.
数学附录 1 欧氏空间:欧氏空间Rn的每一点有n个分量,它们都是实数;两点x=(x1,…xn)和y=(y1,…,yn)之间的距离为
Interval Estimation區間估計
子博弈完美Nash均衡 我们知道,一个博弈可以有多于一个的Nash均衡。在某些情况下,我们可以按照“子博弈完美”的要求,把不符合这个要求的均衡去掉。 扩展型博弈G的一部分g叫做一个子博弈,如果g包含某个节点和它所有的后继点,并且一个G的信息集或者和g不相交,或者整个含于g。 一个Nash均衡称为子博弈完美的,如果它在每.
4-5 Undetermined Coefficients – Annihilator Approach
消費者偏好與效用概念.
2-4 Exact Equations 方法的條件 任何 first order DE 皆可改寫成 的型態 (1) 當 成立時,
范洪源 臺灣師範大學數學系 分支宣告與程式設計 范洪源 臺灣師範大學數學系.
Chapter 5 Modeling with Higher Order Differential Equations
GRANT UNION HIGH SCHOOL
模式识别 Pattern Recognition
Mechanics Exercise Class Ⅰ
4-7 Cauchy-Euler Equation
96學年度第一學期電機系教學助理課後輔導進度表(一)
第一講 函數之圖形與極限 內容: 函數的定義。 函數的表示法。 函數的運算。 函數的圖形。 函數極限的定義。 函數單邊極限的定義。
4-1 Linear Differential Equations: Basic Theory
Q & A.
F F F F F F F 第二章 连续时间信号与系统的时域分析 本章要点 常用典型信号 连续时间信号的分解 连续时间系统的数学模型
第三模块 函数的微分学 第一节 导数的概念 一、瞬时速度 曲线的切线斜率 二、导数的定义 三、导数的几何意义 四、导数的物理意义 五、导函数
IV. Implementation IV-A Method 1: Direct Implementation 以 STFT 為例
第一节 集 合 一、集合的概念 二、集合的运算 三、区间与邻域 四、小结 思考题.
几种常见函数的导数 主讲人:谢元生 (黄石三中特级教师) 黄石三中数学组.
補充 數值方法 數值方法.
Class imbalance in Classification
簡單迴歸分析與相關分析 莊文忠 副教授 世新大學行政管理學系 計量分析一(莊文忠副教授) 2019/8/3.
Computer Architecture
Gaussian Process Ruohua Shi Meeting
Presentation transcript:

4-4 Undetermined Coefficients – Superposition Approach This section introduces some method of “guessing” the particular solution. 4-4-1 方法適用條件 (1) (2) Suitable for linear and constant coefficient DE. (3) g(x), g'(x), g'' (x), g'''(x), g(4)(x), g(5)(x), ………contain finite number of terms.

4-4-2 方法 把握一個原則: g(x) 長什麼樣子,particular solution 就應該是什麼樣子. 記熟下一頁的規則 4-4-2 方法 把握一個原則: g(x) 長什麼樣子,particular solution 就應該是什麼樣子. 記熟下一頁的規則 (計算時要把 A, B, C, … 這些 unknowns 解出來)

Trial Particular Solutions (from text page 146) g(x) Form of yp 1 (any constant) A 5x + 7 Ax + B 3x2 – 2 Ax2 + Bx + C x3 – x + 1 Ax3 + Bx2 + Cx + E sin4x Acos4x + Bsin4x cos4x e5x Ae5x (9x – 2)e5x (Ax + B)e5x x2e5x (Ax2 + Bx + C)e5x e3xsin4x Ae3xcos4x + Be3xsin4x 5x2sin4x (Ax2 + Bx + C)cos4x + (Ex2 + Fx + G)sin4x xe3xcos4x (Ax + B)e3xcos4x + (Cx + E)e3xsin4x It comes from the “form rule”. See page 199.

yp = ? yp = ? yp = ?

4-4-3 Examples Example 2 (text page 144) Step 1: find the solution of the associated homogeneous equation Guess Step 2: particular solution A = 6/73, B = 16/73 Step 3: General solution:

Example 3 (text page 145) Step 1: Find the solution of Step 2: Particular solution guess guess

Particular solution Step 3: General solution

4-4-4 方法的解釋 Form Rule: yp should be a linear combination of g(x), g'(x), g'' (x), g'''(x), g(4)(x), g(5)(x), ……………. Why? 如此一來,在比較係數時才不會出現多餘的項

When g(x) = xn When g(x) = cos kx When g(x) = exp(kx)

When g(x) = xnexp(kx) : 會發現 g(x) 不管多少次微分,永遠只出現

4-4-5 Glitch of the method: Example 4 (text page 146) Particular solution guessed by Form Rule: (no solution) Why?

Glitch condition 1: The particular solution we guess belongs to the complementary function. For Example 4 Complementary function 解決方法:再乘一個 x

Example 7 (text page 148) From Form Rule, the particular solution is Aex 如果乘一個 x 不夠,則再乘一個 x

Example 8 (text page 148) Step 1 注意: sinx, cosx 都要 乘上 x Step 2 Step 3 Step 4 Solving c1 and c2 by initial conditions (最後才解 IVP)

Example 11 (text page 149) From Form Rule yp 只要有一部分和 yc 相同就作修正 修正 乘上 x 乘上 x3 If we choose 沒有 1, x2ex 兩項,不能比較係數,無解

If we choose 沒有 x2ex 這一項,不能比較係數,無解 If we choose A = 1/6, B = 1/3, C = 3, E = 12

Glitch condition 2: g(x), g'(x), g'' (x), g'''(x), g(4)(x), g(5)(x), …………… contain infinite number of terms. If g(x) = ln x If g(x) = exp(x2) :

4-4-6 本節需要注意的地方 (1) 記住 Table 4.1 的 particular solution 的假設方法 (其實和 “form rule” 有相密切的關聯) (2) 注意 “glitch condition” 另外,“同一類” 的 term 要乘上相同的東西 (參考 Example 11) (3) 所以要先算 complementary function,再算 particular solution (4) 同樣的方法,也可以用在 1st order 的情形 (5) 本方法只適用於 linear, constant coefficient DE

4-5 Undetermined Coefficients – Annihilator Approach For a linear DE: Annihilator Operator: 能夠「殲滅」 g(x) 的 operator 4-5-1 方法適用條件 (1) Linear, (2) Constant coefficients (3) g(x), g'(x), g'' (x), g'''(x), g(4)(x), g(5)(x), ………contain finite number of terms.

4-5-2 Find the Annihilator Example 1: (text page 153) annihilator: D4 annihilator: D + 3

annihilator: (D − 2)2 (D − 2)2 = D2 − 4D + 4 註:當各個微分項的 coefficients 皆為 constants 時,function of D 的計算方式和 function of x 的計算方式相同 (x − 2)2 = x2 − 4x + 4  (D − 2)2 = D2 − 4D + 4

General rule 1: If then the annihilator is 注意: annihilator 和 a0, a1, …… , an 無關 只和 , n 有關 The annihilator is independent of the constant multiplied in the front of each term.

General rule 2: If b1  0 or b2  0 then the annihilator is Example 2: (text page 154) annihilator Example 5: (text page 156) annihilator Example 6: (text page 157) annihilator

General rule 3: If g(x) = g1(x) + g2(x) + …… + gk(x) Lh[gh(x)] = 0 but Lh[gm(x)]  0 if m  h, then the annihilator of g(x) is the product of Lh (h = 1 ~ k) Proof: (因為 L1, L2 為 linear DE with constant coefficient, L1L2 = L2L1 )

Similarly, : Therefore,

Example 7 (text page 157) annihilator: D3 annihilator: D − 5 annihilator: (D − 2)3 annihilator of g(x): D3 (D − 2)3 (D − 5)

4-5-3 Using the Annihilator to Find the Particular Solution Step 2-1 Find the annihilator L1 of g(x) Step 2-2 如果原來的 linear & constant coefficient DE 是 那麼將 DE 變成如下的型態: (homogeneous linear & constant coefficient DE) 註: If then

Step 2-3 Use the method in Section 4-3 to find the solution of Step 2-4 Find the particular solution. The particular solution yp is a solution of but not a solution of (Proof): Since , if g(x)  0, should be nonzero. Moreover, . Step 2-5 Solve the unknowns

solutions of particular solution yp solutions of particular solution yp  solutions of  solutions of 本節核心概念

4-5-4 Examples Example 3 (text page 155) Step 1: Complementary function (solution of the associated homogeneous function) Step 2-1: Annihilation: D3 Step 2-2: Step 2-3: auxiliary function roots: m1 = m2 = m3 = 0, m4 = −1, m5 = −2 移除和 complementary function 相同的部分 Solution for :

Step 2-4: particular solution

Example 4 (text page 156) Step 1: Complementary function From auxiliary function, m2 − 3m = 0, roots: 0, 3 Step 2-1: Find the annihilator D − 3 annihilate but cannot annihilate (D2 + 1) annihilate but cannot annihilate (D − 3)(D2 + 1) is the annihilator of Step 2-2:

Step 2-3: auxiliary function: 易犯錯的地方 solution of : Step 2-4: particular solution 代回原式 並比較係數 Step 2-5: Step 3: general solution

4-5-5 本節要注意的地方 (1) 所以要先算 complementary function,再算 particular solution 4-5-5 本節要注意的地方 (1) 所以要先算 complementary function,再算 particular solution (2) 若有兩個以上的 annihilator,選其中較簡單的即可 (3) 計算 auxiliary function 時有時容易犯錯 (4) 的解和 的解不一樣。 (5) 這方法,只適用於 constant coefficient linear DE (因為,還需借助 auxiliary function)

The thing that can be done by the annihilator approach can always be done by the “guessing” method in Section 4-4, too.

4-6 Variation of Parameters 4-6-1 方法的限制 The method can solve the particular solution for any linear DE (1) May not have constant coefficients (2) g(x) may not be of the special forms

4-6-2 Case of the 2nd order linear DE associated homogeneous equation: Suppose that the solution of the associated homogeneous equation is Then the particular solution is assumed as: (方法的基本精神)

代入原式後,總是可以簡化 代入 zero zero

簡化 進一步簡化: 假設 聯立方程式

where | |: determinant 可以和 1st order case (page 58) 相比較

4-6-3 Process for the 2nd Order Case Step 2-1 變成 standard form Step 2-2 Step 2-3 Step 2-4 Step 2-5

4-6-4 Examples Example 1 (text page 162) Step 1: solution of Step 2-2:

Step 2-4: Step 2-5: Step 3:

Example 2 (text page 163) Step 1: solution of Step 2-1: standard form: Step 2-2: Step 2-3: Step 2-4: (未完待續) 注意 算法

Step 2-5: Step 3: Note: 課本 Interval (0, /6) 應該改為(0, /3)

Example 3 (text page 164) Note: 沒有 analytic 的解 所以直接表示成 (複習 page 45)

4-6-5 Case of the Higher Order Linear DE Solution of the associated homogeneous equation: The particular solution is assumed as:

Wk: replace the kth column of W by For example, when n = 3,

4-6-6 Process of the Higher Order Case Step 2-1 變成 standard form Step 2-2 Calculate W, W1, W2, …., Wn (see page 239) Step 2-3 ……… Step 2-4 ……. Step 2-5

Exercise 26 Complementary function:

for -/4 < x < /4 Note: -/4 , /4 are singular points

4-6-7 本節需注意的地方 養成先解 associated homogeneous equation 的習慣 記熟幾個重要公式 4-6-7 本節需注意的地方 養成先解 associated homogeneous equation 的習慣 記熟幾個重要公式 這裡 | | 指的是 determinant (4) 算出 u1(x) 和 u2(x) 後別忘了作積分 (5) f(x) = g(x)/an(x) (和 1st order 的情形一樣,使用 standard form) (6) 計算 u1'(x) 和 u2'(x) 的積分時,+ c 可忽略 因為 我們的目的是算particular solution yp yp 是任何一個能滿足原式的解 (7) 這方法解的範圍,不包含 an(x) = 0 的地方 特別要小心

4-7 Cauchy-Euler Equation 4-7-1 解法限制條件 k not constant coefficients but the coefficients of y(k)(x) have the form of ak is some constant associated homogeneous equation particular solution

4-7-2 解法 Associated homogeneous equation of the Cauchy-Euler equation 4-7-2 解法 Associated homogeneous equation of the Cauchy-Euler equation Guess the solution as y(x) = xm , then

auxiliary function 比較: 和 constant coefficient 時有何不同? 規則:把 變成

4-7-3 For the 2nd Order Case auxiliary function: roots [Case 1]: m1  m2 and m1, m2 are real two independent solution of the homogeneous part:

[Case 2]: m1 = m2 Use the method of reduction of order Note 1: 原式 Note 2: 此時

If y2(x) is a solution of a homogeneous DE then c y2(x) is also a solution of the homogeneous DE If we constrain that x > 0, then

[Case 3]: m1  m2 and m1, m2 are the form of two independent solution of the homogeneous part: 同理

Example 1 (text page 167) Example 2 (text page 168)

Example 3 (text page 169)

solution of the nth order associated homogeneous equation 4-7-4 For the Higher Order Case Process: auxiliary function Step 1-1 roots n independent solutions Step 1-2 solution of the nth order associated homogeneous equation Step 1-3

(1) 若 auxiliary function 在 m0 的地方只有一個根 是 associated homogeneous equation 的其中一個解 (2) 若 auxiliary function 在 m0 的地方有 k 個重根 皆為 associated homogeneous equation 的解

(3) 若 auxiliary function 在  + j 和  − j 的地方各有一個根 (未出現重根) 是 associated homogeneous equation 的其中二個解 (4) 若 auxiliary function 在  + j 和  − j 的地方皆有 k 個重根 是 associated homogeneous equation 的其中2k 個解

Example 4 (text page 169) auxiliary function

4-7-5 Nonhomogeneous Case To solve the nonhomogeneous Cauchy-Euler equation: Method 1: (See Example 5) (1) Find the complementary function (general solutions of the associated homogeneous equation) from the rules on pages 248-251, 255-256. (2) Use the method in Sec.4-6 (Variation of Parameters) to find the particular solution. (3) Solution = complementary function + particular solution Method 2: See Example 6,很重要 Set x = et, t = ln x

Example 5 (text page 169, illustration for method 1) Step 1 solution of the associated homogeneous equation auxiliary function Step 2-2 Particular solution Step 2-3

Step 2-4 Step 2-5 Step 3

Example 6 (text page 170, illustration for method 2) Set x = et, t = ln x (chain rule) Therefore, the original equation is changed into

(別忘了 t = ln x 要代回來) Note 1: 以此類推 Note 2: 簡化計算的小技巧:結合兩種解 nonhomogeneous Cauchy-Euler equation 的長處

4-7-6 本節要注意的地方 (1) 本節公式記憶的方法: 把 Section 4-3 的 ex 改成 x,x 改成 ln(x) 4-7-6 本節要注意的地方 (1) 本節公式記憶的方法: 把 Section 4-3 的 ex 改成 x,x 改成 ln(x) 把 auxiliary function 的 mn 改成 (2) 如何解 particular solution? Variation of Parameters 的方法 (3) 解的範圍將不包括 x = 0 的地方 (Why?)

還有很多 linear DE 沒有辦法解,怎麼辦 (1) numerical approach (Section 4-9-3) (2) using special function (Chap. 6) (3) Laplace transform and Fourier transform (Chaps. 7, 11, 14) (4) 查表 (table lookup)

(1) 即使用了 Section 4-7 的方法,大部分的 DE還是沒有辦法解 (2) 所幸,自然界真的有不少的例子是 linear DE 甚至是 constant coefficient linear DE

Exercise for practice Section 4-4 5, 6, 14, 17, 18, 24, 26, 32, 33, 39, 42 Section 4-5 2, 7, 8, 13, 18, 31, 45, 60, 62, 69, 70 Section 4-6 4, 5, 8, 13, 14, 17, 18, 21, 28, 29, 34 Section 4-7 11, 17, 18, 20, 21, 24, 32, 34, 36, 37, 40, 42 Review 4 2, 21, 22, 25, 27, 28, 29, 30, 32, 33, 34, 37, 42