第二章 多元正态分布的参数估计 第一节 引言 第二节 基本概念 第三节 多元正态分布 第四节 多元正态分布的参数估计

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
信号与系统 第三章 傅里叶变换 东北大学 2017/2/27.
SPSS系统教程.
第5章 增值税的其他筹划策略 主 讲 人:张 睿
感恩的心 作詞: 陳樂融 作曲: 陳志遠 鋼琴編曲: 盧能榮. 感恩的心 作詞: 陳樂融 作曲: 陳志遠 鋼琴編曲: 盧能榮.
上海体育职业学院 祁社生 一、重视体育科研在提高竞技运动训练水平中的意义和作用
第九章 金融资本 第一节 借贷资本和利息 第二节 货币需求与供给 第三节 股份资本 第四节 保险业资本 第五节 金融衍生产品.
20个常用财务指标 判断短期偿债能力的两大财务指标: 1, 流动比率=流动资产/流动负债>1
第一节 数理统计的基本概念.
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
一、能线性化的多元非线性回归 二、多元多项式回归(线性化)
传播学研究:理论与方法 戴元光 赵士林 邢虹文.
育達商業技術學院 經理人職涯講座 主講人:林文奇 九十七年五月二十二日
国王赏麦的故事.
货币发行权的归属问题 政府、民众和银行, 谁拥有货币发行权?.
上市公司之證券基本分析.
6.6 单侧置信限 1、问题的引入 2、基本概念 3、典型例题 4、小结.
《高等数学》(理学) 常数项级数的概念 袁安锋
UI(用户界面)集训班 Illustrator 高级班.
财务绩效评价计分方法 1、基本指标计分 财务绩效定量评价的基本指标计分是按照功效系数法计分原理,将评价指标实际值对照相应行业标准值,按照规定的计分公式计算各项基本指标得分。    (1)单项指标得分= 本档基础分 调整分 + 本档基础分=指标权数×本档标准系数 功效 系数 实际值-本档标准值 调整分=
本讲义可在网址 或 ftp://math.shekou.com 下载
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第一章 商品 第一节 价值创造 第二节 价值量 第三节 价值函数及其性质 第四节 商品经济的基本矛盾与利己利他经济人假设.
第十七章 SPSS系统在传播学研究中的应用
第一节 旅游规划的意义和种类 第二节 旅游规划的内容 第三节 旅游规划的编制 第四节 旅游景区规划
传媒学院2013年度团委工作 总结分析报告
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
例1 :甲击中的环数; X :乙击中的环数; Y 平较高? 试问哪一个人的射击水 : 的射击水平由下表给出 甲、乙两人射击,他们
第八章 菜单设计 §8.1 Visual FoxPro 系统菜单 §8.2 为自己的程序添加菜单 §8.3 创建快捷菜单.
第六章 因子分分析 §6.1 因子分析的基本理论 §6.2 因子载荷的求解 §6.3 因子分析的步骤与逻辑框图 §6.4 因子分析的上机实现
大学计算机基础 典型案例之一 构建FPT服务器.
第一讲: 基本流程(1).
本章重點: 一、集中量數的意義和種類 二、算術平均數 三、中位數(中數) 四、眾 數 五、其他集中量數 六、SPSS12.0實務操作
第十七章 相關係數 17.1 前言 17.2 相關係數 17.3 功能視窗(Bivariate) 17.4 範例(Bivariate)
第十章 方差分析.
数据挖掘工具性能比较.
数据统计与分析 秦 猛 南京大学物理系 手机: 第十讲 数据统计与分析 秦 猛 南京大学物理系 办公室:唐仲英楼A 手机:
庄文忠 副教授 世新大学行政管理学系 相关分析与简单回归分析 庄文忠 副教授 世新大学行政管理学系 SPSS之应用(庄文忠副教授) 2019/4/7.
第七章 参数估计 7.3 参数的区间估计.
习题 一、概率论 1.已知随机事件A,B,C满足 在下列三种情况下,计算 (1)A,B,C相互独立 (2)A,B独立,A,C互不相容
问卷设计及数据分析初步 柯政
抽样和抽样分布 基本计算 Sampling & Sampling distribution
模型分类问题 Presented by 刘婷婷 苏琬琳.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
复习.
实体描述呈现方法的研究 实验评估 2019/5/1.
第4章 Excel电子表格制作软件 4.4 函数(一).
iSIGHT 基本培训 使用 Excel的栅栏问题
概 率 统 计 主讲教师 叶宏 山东大学数学院.
第一部分:概率 产生随机样本:对分布采样 均匀分布 其他分布 伪随机数 很多统计软件包中都有此工具 如在Matlab中:rand
SPSS行业应用实例 市场研究/企业数据分析
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
线 性 代 数 厦门大学线性代数教学组 2019年5月12日4时19分 / 45.
数据统计与分析 秦 猛 南京大学物理系 第11讲 办公室:唐仲英楼A
§5.2 抽样分布   确定统计量的分布——抽样分布,是数理统计的基本问题之一.采用求随机向量的函数的分布的方法可得到抽样分布.由于样本容量一般不止2或 3(甚至还可能是随机的),故计算往往很复杂,有时还需要特殊技巧或特殊工具.   由于正态总体是最常见的总体,故本节介绍的几个抽样分布均对正态总体而言.
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
§2 方阵的特征值与特征向量.
总复习.
第十五讲 区间估计 本次课讲完区间估计并开始讲授假设检验部分 下次课结束假设检验,并进行全书复习 本次课程后完成作业的后两部分
参数估计 参数估计问题:知道随机变量(总体)的分布类型, 但确切的形式不知道,根据样本来估计总体的参数,这 类问题称为参数估计。
回归分析实验课程 (实验三) 多项式回归和定性变量的处理.
我们能够了解数学在现实生活中的用途非常广泛
第8章 创建与使用图块 将一个或多个单一的实体对象整合为一个对象,这个对象就是图块。图块中的各实体可以具有各自的图层、线性、颜色等特征。在应用时,图块作为一个独立的、完整的对象进行操作,可以根据需要按一定比例和角度将图块插入到需要的位置。 2019/6/30.
《偏微分方程》第一章 绪论 第一章 绪论 1.1.
培训课件 AB 变频器的接线、操作及参数的备份 设备动力科.
Sssss.
Presentation transcript:

第二章 多元正态分布的参数估计 第一节 引言 第二节 基本概念 第三节 多元正态分布 第四节 多元正态分布的参数估计 第一节 引言 第二节 基本概念 第三节 多元正态分布 第四节 多元正态分布的参数估计 第五节 多元正态分布参数估计的 实例与计算机实现

第一节 引言 多元统计分析涉及到的都是随机向量或多个随机向量放在一起组成的随机矩阵。例如在研究公司的运营情况时,要考虑公司的获利能力、资金周转能力、竞争能力以及偿债能力等财务指标;又如在研究国家财政收入时,税收收入、企业收入、债务收入、国家能源交通重点建设基金收入、基本建设贷款归还收入、国家预算调节基金收入、其他收入等都是需要同时考察的指标。显然,如果我们只研究一个指标或是将这些指标割裂开分别研究,是不能从整体上把握研究问题的实质的,解决这些问题就需要多元统计分析方法。为了更好的探讨这些问题,本章我们首先论述有关随机向量的基本概念和性质。

在实用中遇到的随机向量常常是服从正态分布或近似正态分布,或虽本身不是正态分布,但它的样本均值近似于正态分布。因此现实世界中许多实际问题的解决办法都是以总体服从正态分布或近似正态分布为前提的。在多元统计分析中, 多元正态分布占有很重要地位,本书所介绍的方法大都假定数据来之多元正态分布。为此,本章将要介绍多元正态分布的定义和有关性质。 然而在实际问题中,多元正态分布中均值向量和协差阵通常是未知的,一般的做法是由样本来估计。这是本章讨论的重要内容之一,在此我们介绍最常见的最大似然估计法对参数进行估计,并讨论其有关的性质。

第二节 基本概念 一 随机向量 二 多元分布 三 随机向量的数字特征

一、随机向量 我们所讨论的是多个变量的总体,所研究的数据是同时p个指标(变量),又进行了n次观测得到的,我们把这个p指标表示为X1 ,X2,…,Xp,常用向量X = (X1 , X2 , … , XP)' 表示对同一个体观测的p个变量。这里我们应该强调,在多元统计分析中,仍然将所研究对象的全体称为总体,它是由许多(有限和无限)的个体构成的集合,如果构成总体的个体是具有p个需要观测指标的个体,我们称这样的总体为p维总体(或p元总体)。上面的表示便于人们用数学方法去研究p维总体的特性。这里“维”(或“元”)的概念,表示共有几个分量。若观测了n个个体,则可得到如表2.1的数据,称每一个个体的p个变量为一个样品,而全体n个样品组成一个样本。

二、多元分布

三、随机向量的数字特征

第三节 多元正态分布 一 多元正态分布的定义 二 多元正态分布的性质

一、多元正态分布的定义

二、多元正态分布的性质

第四节 多元正态分布的参数估 计 一 多元样本的数字特征 二 均值向量与协差阵的最大似然估计 三 Wishart分布

一、多元样本的数字特征

二、均值向量与协差阵的最大似然 估计

三、Wishart分布

第五节 多元正态分布参数估计 的实例与计算机实现 第五节 多元正态分布参数估计 的实例与计算机实现 一 均值向量的估计 二 协差阵的估计

通过上面的理论分析知道,多元正态总体均值向量和协差阵的最大似然估计分别是样本均值向量和样本协差阵。利用SPSS软件可以迅速地计算出多元分布的样本均值向量、样本离差阵和样本协差阵。下面通过一个实例来说明多元正态分布参数估计的SPSS实现过程。 从沪深两市上市公司中随机抽取300家公司,取其三个反映收益情况的三个财务指标:每股收益率(eps)、净资产收益率(roe)和总资产收益率(roa)。现要求对这三个指标的均值和协差阵进行估计。

一、均值向量的估计 在SPSS中计算样本均值向量的步骤如下: 1. 选择菜单项Analyze→Descriptive Statistics→Descriptives,打开Descriptives对话框,如图2.1。将待估计的三个变量移入右边的Variables列表框中。 图2.1 Descriptives对话框

2. 单击Options按钮,打开Options子对话框,如图2 2. 单击Options按钮,打开Options子对话框,如图2.2所示。在对话框中选择Mean复选框,即计算样本均值向量。单击Continue按钮返回主对话框。 图2.2 Options子对话框

3. 单击OK按钮,执行操作。则在结果输出窗口中给出样本均值向量,如表2.2。即样本均值向量为(0.175,0.044,0.026)。 表2.2 样本均值向量

图2.3 Bivariate Correlations对话框 二、协差阵的估计 在SPSS中计算样本协差阵的步骤如下: 1. 选择菜单项Analyze→Correlate→Bivariate,打开Bivariate Correlations对话框,如图2.3。将三个变量移入右边的Variables列表框中。 图2.3 Bivariate Correlations对话框

2. 单击Options按钮,打开Options子对话框,如图2 2. 单击Options按钮,打开Options子对话框,如图2.4。选择Cross-product deviations and covariances复选框,即计算样本离差阵和样本协差阵。单击Continue按钮,返回主对话框。 图2.4 Options子对话框

3. 单击OK按钮,执行操作。则在结果输出窗口中给出相关分析表。表中Pearson Correlation给出皮尔逊相关系数矩阵,Sum of Squares and Cross-products给出样本离差阵,Covariance给出样本协差阵。 值得注意的是,这里给出的样本协差阵是S/(n-1) ,而不是S/n 。

表2.3 样本相关系数矩阵、离差阵与协差阵

本章结束