高强度耐弯单模光纤 的研究与应用 沈一春 博士.

Slides:



Advertisements
Similar presentations
2 、 5 倍数的特征 学习目标 1. 掌握 2 、 5 倍数的特征,能判 断一个数是否是 2 、 5 的倍数。 2. 理解奇数和偶数的意义,正 确判断一个数是奇数还是偶数。
Advertisements

导数 导数 一、主要内容 微分 第二章 习题课 二、典型例题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 高阶导数 一、主要内容 微 分微 分 微 分微 分.
中外领导力 的 跨文化 比较分析 主讲人:. 壹 领导力理论 中国古代 “ 修身、齐家、治国、平天下 ” —— 孔子(儒家思想 ) 庄子(道家学派) 老子(道家学派)
飲料備製 ( 作業十 ) 組員 : 9A0M0009 林昆樺 9A0M0026 李元盛 9A0M0031 林殷正 ( 組長 ) 9A0M0046 邱于倫 9A0M0048 林裕嘉 9A0M0054 巫紀樺 指導老師 : 葉佳聖.
三信家商「 105 學年度」 升學進路暨報名作業說明會 教務處實研組 教務處 實研組 日期︰ 104 年 10 月 19 日 時間: am 10:00~11:50 地點:教學行政大樓 7F 講堂.
窮人與富人的決定性差異 書名: 窮人與富人的距離 0.05mm 作者:張禮文出版社:海鴿. 窮人與富人的決定性差異 窮人和富人的關鍵差異不在口袋金錢的多寡,而 在腦袋。這本書將全面解開窮人之所以貧窮,而 富人之所以富裕的所有奧秘。 窮人和富人的關鍵差異不在口袋金錢的多寡,而 在腦袋。這本書將全面解開窮人之所以貧窮,而.
C A D C D.
一、研究背景 植物组培育细胞培养源于 19 世纪后半 叶,当时植物细胞全能性的概念还没有 完全确定。人们便对此进行研究。 目前,植物组培已经变成了一种常规 的技术,广泛应用于植物的脱毒,快繁 ,基因工程,一串研究,次生代谢物质 生产,工厂化育苗等多方面。
大学生入党积极分子培训教材 主编:蔡中华 曹培强.
水痘.
无人机载微型成像高光谱作物信息探测与精确感知系统
第二章營建規劃施工與管理 營建工程過程不外乎規劃、設計、施工、管理等。
國立金門高級農工職業學校 水產養殖科 游育霖
程啸 (法学博士、清华大学法学院副教授、硕士生导师、洪堡学者)
九寨沟 领略人间仙境.
政府採購法令概要 政府採購類型 1.工程採購 2.財物採購 3.勞務採購.
鞍钢冷轧钢板(莆田)有限公司 毕业生招聘宣讲会
《数学》( 新人教版.七年级 上册 ) 第一章 有理数 授课人:三元中学 苏鼎明.
项目六 典型零件图的识读 任务6 识读法兰零件图.
一个中国孩子的呼声.
第二單元 校園的昆蟲 1. 校園的小動物 2. 昆蟲一族 3. 昆蟲變變變 4. 我的昆蟲寶貝 5. 昆蟲博覽會 吳端敏 製.
机械工业发展史.
第十章 暑 温 辽宁中医药大学 温病学教研室.
桥城中学创建广东省现代教育技术实验学校自查报告
熱帶雨林對人類的 局限和可能性.
第二課 鬼 頭 刀 廖鴻基.
钢筋混凝土楼梯模板施工 学习目标 主要内容.
證道: 我是羊的門,我是好牧人 講題:「耶穌說:”I Am”『我是…』」之(四) : 講員: 梁淑英牧師
2014年国家义务教育质量监测 体育现场测试说明 浙江省教育质量监测中心 2014年11月.
第4章 工业建筑特殊构造 第6篇 工业建筑设计 4.1 防爆构造 对于有爆炸危险的厂房,防爆技术设施分为两大类: 预防性技术措施
長榮中學高中部104年甄選入學 作業相關事項說明會
指導老師:曾憲正 老師 組員:公廣2A 4980M089鄭欽鴻 M039鄭仁凱 2B M060呂明耿
昆蟲總動員 三年級教學群.
风 温 主讲人 王洪京.
东方底特律—— 大美十堰.
春 温 主讲人 王洪京.
市场营销原理与实训 市场营销策略模块 项目五 产品策略.
乳房护理 主编:卢荣华.
第四章 室内设计与人体工程学 第一节 人体工程学与室内设计 人体工程学也叫人机工程学、人类工效学、人类工程学、工程心理学、宜人学等。
重庆市渝州工程勘察设计技术服务中心---刘刚 2013年3月29日
4个故事 在很久很久以前….
105年推甄及登記分發說明會 教務處 註冊組課務組.
前列腺结石 山西医科大学第一医院 王靖宇.
全日制义务教育物理课程标准 ——“运动与相互作用”主题解读及实施建议
复习 1. 注意最值与极值的区别. 最值是整体概念而极值是局部概念. 极大值可能小于极小值,极小值可能大于极大值.
第十一章 结构施工图 11-1 概述 一、结构施工图(结施):P308
第九章 居住区规划 §1、居住区规划的任务与编制.
人教版七年级下册第七章第四节 人教版8年级下册第五章第二节 北方地区和南方地区 制作:克拉玛依市独山子第一中学地理组.
102年度路平專案執行情形 簡報單位:工務處養護工程科 簡 報 人:楊 松 樺 簡報日期:103年4月1日.
复习 1. 微分中值定理的条件、结论及关系 费马引理 拉格朗日中值定理 罗尔定理 柯西中值定理 2. 微分中值定理的应用 关键:
目 錄 壹、緣由 貳、問題解析 參、問題歸納 肆、因應對策 伍、評鑑獎勵 陸、追蹤考核 1.
2010高考中国地理 复习系列课件 福建省长泰一中 姚秀元
昆虫 昆虫的认识 制作昆虫标本方法与过程 1 2.
翰林自然 六年級上學期 第二單元 聲音與樂器.
政府採購法令概要 政府採購類型 1.工程採購 2.財物採購 3.勞務採購 1.
第五章 中耕机械 一、除草技术与中耕机械 ○ 化学除草剂:易于污染环境、有些草难以除尽 ○ 中耕机械:适于行间除草
物理学专业 光学实验绪论 主讲人:路莹 洛阳师范学院物理与电子信息学院 2009年3月.
大学生 就业、生活及价值观追踪调查2013年度数据发布
计算机网络与网页制作 Chapter 03:因特网基础知识
科学网 李浪 第4章 物理层 科学网 李浪.
高电压技术 高电压技术.
第二部分 免疫系统与免疫活性分子 第二章 免疫系统 第三章 免疫球蛋白 第二 部分 第五章 细胞因子 第四章 补体系统.
单色仪的用途 光谱学发展史 单色仪的结构和原理 闪耀光栅的工作原理 单色仪的入射和出射狭缝 钠原子的量子亏损和里德堡常数
使徒行傳.
創造不一樣的人生 -如何與身心障礙者接觸 新竹教育大學 薛明里.
义务教育课程标准实验教科书 小学语文 四年级 下册
台灣房價指數 台灣房屋 中央大學 2011年7月29日.
薄层色谱基础知识 及斑点异常的原因和克服 1.
Presentation transcript:

高强度耐弯单模光纤 的研究与应用 沈一春 博士

主要内容 光纤的弯曲特性 光纤的弯曲损耗机理及理论计算 光纤中弯曲损耗的控制因素 光纤的使用寿命——机械性能可靠性 高强度抗弯曲单模光纤的应用

光纤的发展历程 2005年 1979年 1970年 1966-华裔科学家“光纤之父” 高锟 预言光纤将用于通信; 1966年 1970-美国康宁公司成功研制成传输损耗只有20dm/km的光纤; 1977-首次实际安装电话光纤网路; 1979-赵梓森拉制出我国自主研发的第一根实用光纤,被誉为“中国光纤之父”; 1990-区域网路及其他短距离传输应用之光纤; 2000-到屋边光纤=>到桌边光纤; 2005-FTTH(Fiber To The Home)光纤直接到家庭。

光纤的弯曲特性 光纤的弯曲特性 宏观弯曲:光纤轴心弯成环形,其直径远大于光纤的本身直径,约几个毫米,光功率就在环形弯曲处从光纤内部向外辐射,以致光纤传输损耗加大。 微观弯曲:光纤轴心发生偏移,其直径小于光纤本身的直径。偏移的间隔为几个微米,光功率沿光纤长度间断地从光纤内部向外辐射,引起的损耗。

光纤弯曲损耗机理 当光纤弯曲的曲率半径太小,将引起光的传播途径的改变,使光从纤芯渗透到包层,甚至有可能穿过包层向外渗漏。在正常情况下,光在光纤里沿轴向传播的常数β应满足: n2k0< β<n1k0 当光纤弯曲时,光在弯曲部分中传输,为了要保持同相位的电场和磁场在同一平面里,则越靠近外侧,速度就越大;而当距纤芯的距离达到某一个临界距离时,其运动速率必须大于光速才能跟上纤芯中的场,这显然是不可能的。因而这个临界距离以外的场就丢失损耗。

光纤弯曲损耗理论计算——宏弯损耗 αc =AcR-1/2exp(-UR) (1) 纯弯曲损耗也就是宏弯损耗,即在恒定曲率半径光纤中的损耗,Jeunhumme单模光纤给出了如下公式,假设半径R,则每单位长度的损耗为: αc =AcR-1/2exp(-UR) (1) Ac=(1/2)( π/aW3)1/2{U/[WK1(W)]}2 (2) U=4&n W3/(3aV2n2) (3) 式中a和&n分别是纤芯半径和纤芯/包层的折射率差,αc,U,W和V分别为弯曲损耗系数、径向归一化相位常数、径向归一化衰减常数、归一化频率。 一般,对于给定的折射率差、工作波长和截止波长,有一个临界曲率半径Rc,当实际曲率半径接近Rc时,弯曲损耗从可以忽略的数值急剧增加到不可容忍的数值,如图1所示。在通常波段(1000nm)处,有效的Rc近似公式为: Rc=20λ(&n)-3/2(2.748-0.996λ/λc)-1 (4) 左图为 光纤弯曲损耗和弯曲半径的关系。从图中可以看出,随着弯曲半径的减小,其弯曲损耗不断的增大。而且在减小到某一值后,由于弯曲带来的损耗将会突然急剧的增大。

光纤弯曲损耗理论计算——微弯损耗 光纤受到不均匀应力的作用,例如受到侧压力或者温度变化时,光纤轴产生微小不规则弯曲,其结果是传导模变为辐射模 而导致光能损耗。 单模光纤中的微弯损耗是依赖于波长的,即单模光纤对微弯损耗的敏感性随着波长的增加会有少量的增长,产生这种物理原因是因为较长的波长会使MFD增加,从而使更多的功率辐射到纤芯外。 微弯损耗的理论计算 微弯损耗是光纤随机畸变而产生的高次模与辐射模之间的模耦合所引起的光功率损失,Jeunhumme对于单模光纤的微弯损耗给出如下公式: Asm=0.05amm*k4*w06(NA)4/a2m (5) amm=(K/4)*(kn1w0)2*(kn1w0)2p (6) 其中,NA为数值孔径,am为纤芯半径, amm为数值孔径NA与纤芯半径am的突变型多模光纤的微弯损耗,K为常数,k为自由波数,p为弯曲功率光谱因子,w0为模场半径。 从上式中可见,弯曲损耗几乎取决于模场直径,当光纤微弯时,其损耗值增加,一般1550nm时比1210nm时高3~5倍。

光纤中弯曲损耗的控制因素(1) MAC对弯曲损耗的控制因素 阶跃式折射率单模光纤的弯曲性能也可以用模场直径(MFD)与截止波长(λc)之间的特性表示,这个著名的无量纲参数被称为MAC,其表征了光纤的弯曲性能,函数关系表示为: MAC=MFD/λc 通过理论分析,光纤的弯曲敏感性随着MAC值的减小而降低,损耗随MAC增加而增加。即降低MFD或增加截止波长来降低MAC值,达到减小弯曲敏感性。但是模场直径MFD过小,在抗弯曲敏感性光纤与常规光纤熔接时会引起较大的熔接损耗,同时考虑全波段进行传输时,光缆截止波长需小于1260nm,因此在两者之间寻求一个最佳平衡点。

光纤中弯曲损耗的控制因素(2) 波导结构设计对弯曲损耗的控制因素 光纤的结构与性能按其应用场合的差异而不同。在实际使用中的光缆线路中,光缆中的光纤不可避免地受到弯曲应力的作用。研究证明,光纤的弯曲损耗与光纤的折射率分布结构参数(相对折射率△n、纤芯半径a)有关。因此,对于一个特定的光通信系统,选择合适的光纤参数是非常重要的,设计合理的光纤剖面折射率分布结构及材料组成,实现粘度匹配和功能梯度材料组成及结构组成,这有利于从本质上提高光纤的抗弯曲性能和可靠的机械性能。 通过下陷包层包裹在芯层外围,可以有效降低弯曲损耗,同时,在很大程度上改变了模场传输性能如MFD和色散等。这在降低截止波长的同时提高了光纤的抗弯性能。

然而,这些不同类型的抗弯曲光纤在熔接与连接损耗和性能一致性方面有着很大的差异。 除了以上光纤折射率剖面结构外,还有以下几种结构的抗弯曲光纤,达到约束光线的作用。 纤芯折射率最高,光信号在其中传输; 实心玻璃中的环结构,进一步将光线限制在纤芯中; 较低折射率氟修正包层,帮助将光线限制在纤芯中; 包层中含有较低折射率的气泡或空洞,帮助将光线限制在纤芯中; 包层中含有较低折射率的孔,帮助将光线限制在纤芯中; 包层,较低的折射率将光纤限制在纤芯中。 然而,这些不同类型的抗弯曲光纤在熔接与连接损耗和性能一致性方面有着很大的差异。

光纤中弯曲损耗的控制因素(3) 涂层设计对弯曲损耗的控制因素 光纤的微弯损耗与涂层的设计工艺有关。适合的涂覆压力与温度能够明显释放涂层应力,降低衰减,也即降低光纤的微弯损耗。同样,涂料的本身特征对光纤的损耗具有重要的影响。通常,外涂层的玻璃转化温度(Tg)高于60℃,内涂层的玻璃转化温度(Tg)远低于0℃,当内涂层处于弹性状态时,外涂层仍处于玻璃状态,此时两者的膨胀系数相差十倍左右,在裸光纤与内涂层的界面上产生拉应力,增加了光纤的衰减及微弯损耗。 光纤种类 参数 Tg(℃) 杨氏模量(Gpa) 剥离力(N) 衰减850nm(dB/km) A -50 0.853 1.1 2.21 B -30 0.289 2.0 2.17 C -60 1.2 1.7 2.18 D -65 1.0 1.5 左表 显示了四种不同涂料,其中B涂料的模量最小。研究表明,B涂料光纤具有最小的衰减,弯曲过程中的热应力对光纤的影响比具有高模量的涂层的光纤要小,从上图中可见,B涂料光纤的微弯损耗最低,只有8dB。而C涂料的微弯损耗达到35dB左右。因此,内涂层涂料的模量对光纤弯曲性能具有明显的影响。

光纤的使用寿命——机械性能可靠性 σ=Er/(R+Cth+r) (7) 光纤的可靠性除了光损耗之外,机械可靠性也是一个重要指标。国际电工委员会(IEC)光纤系统推荐的标准机械可靠性曲线(见右图)。 当光纤弯曲时,光纤外侧将受到张力的作用,可用下式表示: σ=Er/(R+Cth+r) (7) 式中,E为玻璃的杨氏模量,r为光纤半径,R为弯曲半径,Cth为涂层厚度。从中可以看出,当弯曲半径越小,光纤外侧受到的张应力越大,光纤越容易发生折断。 随着弯曲损耗性能的提高,光纤可允许弯曲的半径减小,对所有的应用来说,可靠性就成为一个比较重要的问题了。通常经过弯曲性能优化的光缆在CO/HE/DC机柜中1550nm处一次半径10mm盘纤的宏弯损耗可以确保最大不超过0.2dB,弯曲半径小于10mm时,光纤有折断的风险。 对于这些关键应用,如果弯曲半径接近(上图中)红线,即小于7.5mm时,光纤的弯曲损耗如果保持在能测出的范围内,就能降低由于安装失误或类似原因导致的长期光纤损坏风险,光纤安装经过测试后,如果没有很大的额外损耗,就说明没有出现意外的半径很小的弯曲,从而确保了长期的可靠性。

高强度抗弯曲光纤的应用——军事 抗弯曲光纤在军事和国防上的应用也更加深入和广泛,特别是在制导领域中,采用光纤制导替代传统的金属导线,充分提高了导弹的性能,对射程、准确度大大提高。采用光纤制导导弹后,甚至在障碍后方或视距外也可以锁定目标,通过光纤将图像送回,可以让射手看到目标。例如,“独眼巨人”导弹采用光纤传输目标、图像和控制指令,可全天候精确打击各种移动或静止目标。

高强度抗弯曲光纤的应用——FTTX 在国内市场上,ADSL仍然是宽带接入网的主流,这是由成本和业务需求所决定的。然而,在宽带接入层面,下一代的网络必然是光纤到户(FTTH)。FTTH接入方式比现有的DSL宽带接入方式更适合一些已经出现或即将出现的宽带业务和应用,例如:电视电话会议、可视电话、视频点播、IPTV、网上游戏、远程教育和远程医疗等。 FTTX在未来几年内,必然成为网络建设的重点。从上图可见,在2011年,其市场份额将达到20.3亿元。因此,发展光纤到户已是大势所趋,一种弯曲半径更小的光纤也将是业务内所急需的产品,抗弯曲光纤将逐渐受各大运营商、制造商的关注,这给抗弯曲光纤提供了广泛的发展空间。

高强度抗弯曲光纤的应用——FTTX 随着电信重组和3G牌照发放,3G无线业务的逐步开展,使得移动网络宽带高于现有大部分固网宽带,面对带宽日益提升的新一代移动宽带,以DSL为主流的固定宽带将逐步散失优势。 FTTB/FTTC等系统建设模式的设备成本已经低于传统铜线模式建设成本,FTTx发展的时机已经成熟,未来几年FTTx将迎来迅速发展的黄金时期。 FTTB系统 FTTC系统 FTTH系统

谢谢! 欢迎批评指正