Q & A.

Slides:



Advertisements
Similar presentations
Chapter 2 Combinatorial Analysis 主講人 : 虞台文. Content Basic Procedure for Probability Calculation Counting – Ordered Samples with Replacement – Ordered.
Advertisements

663 Chapter 14 Integral Transform Method Integral transform 可以表示成如下的積分式的 transform  kernel Laplace transform is one of the integral transform 本章討論的 integral.
楊學成 老師 Chapter 1 First-order Differential Equation.
1 Field and Wave Electromagnetics Edited by David K. Cheng.
(复习课) 光学复习.
English Writing Lecture 9
-Artificial Neural Network- Hopfield Neural Network(HNN) 朝陽科技大學 資訊管理系 李麗華 教授.
沐阳老年社区.
Algorithms for Biological Sequence Analysis
XI. Hilbert Huang Transform (HHT)
3-3 Modeling with Systems of DEs
Euler’s method of construction of the Exponential function
Population proportion and sample proportion
模式识别 Pattern Recognition
关于数学教育 华东师范大学数学系 张奠宙 永安 4 4.
Differential Equations (DE)
微積分網路教學課程 應用統計學系 周 章.
非線性規劃 Nonlinear Programming
第二十七單元 切平面.
Ch3. Maxwell’s Equations in Differential Form
第二章 共轴球面系统的物像关系 Chapter 2: Object-image relations of coaxial spheric system.
Properties of Continuous probability distributions
Stochastic Relationships and Scatter Diagrams
Fundamentals of Physics 8/e 27 - Circuit Theory
第二十九單元 方向導數與梯度.
偏導數 第二十六單元.
Short Version : 6. Work, Energy & Power 短版: 6. 功,能和功率
機械波 Mechanical Waves Mechanical wave is a disturbance that travels through some material or substance called the medium for wave. Transverse wave is the.
机器人学基础 第四章 机器人动力学 Fundamentals of Robotics Ch.4 Manipulator Dynamics
普通物理 General Physics 29 - Current-Produced Magnetic Field
普通物理 General Physics 31 - Alternating Fields and Current
Fundamentals of Physics 8/e 31 - Alternating Fields and Current
Interval Estimation區間估計
消費者偏好與效用概念.
Fundamentals of Physics 8/e 28 - Magnetic Force
普通物理 General Physics 22 - Finding the Electric Field-I
Chapter 8 Thermodynamics of High-Speed Gas Flow (第8章 气体和蒸气的流动)
First-Law Analysis for a Control Volume
Summary Chapter 2 1. Solution for H-like atom/ion (one-electron system) radial & angular functions of Atomic orbitals, electron cloud, quantum numbers.
Short Version : 21. Gauss’s Law 短版 : 21. 高斯定律
IBM SWG Overall Introduction
行星運動 人類對天體的運行一直充滿著好奇與幻想,各式各樣的傳說與理論自古即流傳於各地。在這些論述中,不乏各式神鬼傳說與命運註解,也包含了許多爭論不休的學術觀點。雖然這些形而上的虛幻傳奇仍然流傳於坊間,但是科學上的爭執卻因牛頓重力理論(law of gravitation)的出現而大致底定。
Mechanics Exercise Class Ⅰ
Summary for Chapters 24 摘要: 24章
線性規劃模式 Linear Programming Models
Inter-band calibration for atmosphere
第九章 明暗分析 Shape from Shading SFS SFM SFC SFT …… SFX.
12. Static Equilibrium 靜力平衡
實 驗 1 : 電 場(Electric Field) (課本實驗14)
Q & A.
Nucleon EM form factors in a quark-gluon core model
Mechanics Exercise Class Ⅱ
名词从句(2).
Fundamentals of Physics 8/e 22 - Finding the Electric Field-I
 隐式欧拉法 /* implicit Euler method */
虚拟语气(1).
定语从句(11).
名词从句(4) (复习课).
动词不定式(6).
12. Static Equilibrium 靜力平衡
定语从句(2).
指導教授:陳正宗 終身特聘教授 指導學長:李應德 老師、高聖凱、李家瑋、 江立傑、簡頡 學生:黃文生 日期:
WHAT从句(1).
高斯定律 Gauss’s Law.
句子成分的省略(3).
簡單迴歸分析與相關分析 莊文忠 副教授 世新大學行政管理學系 計量分析一(莊文忠副教授) 2019/8/3.
Principle and application of optical information technology
Computer Architecture
Gaussian Process Ruohua Shi Meeting
每月一德 VALUE OF THE MONTH 孝FILIAL PIETY.
Presentation transcript:

Q & A

§1 Sep 21 何斯慧

Answer: As shown in Fig 1.4 (p17), n is the normal of the boundary surface, t is the normal of the loop and is tangent to the surface. So t x n is the direction of the long arm. Using the rule of mixed product, (t x n)* E =(n x E)* t, we get vector forms of boundary relations for E and H.

del operator

2) let me use the vector formula to verify,

Taylor expansion -see (4.22) (p150)

3) p39, Green function is a solution of point source, it will be used to solve boundary value problem. Neumann problem usually is a exterior problem, where surface charge density is given (electric field or normal derivative of the potential). So total surface is inner part plus infinity.

4) P 42, Green’s 1st identity

5) p44, variational approach Derive EoS Provide approximate but accurate solutions Systems in equilibrium have minimal energy. energy-like functional has a stationary minimum if \psi satisfy equation of motion (Poisson equation, Schrodinger eq, Dirac eq)

Consider the change of the functional Provided , the change vanishes if \psi satisfies Poisson eq, where g is a source function.

Recipe to find an approximate solution Choose a flexible trial function \phi( a, b, c,…) Calculate the functional I( a, b, c…) Seek an extremum by setting the partial derivatives with respect to the parameters - Then solve coupled algebraic linear equations With the optimun parameters, the trial solution is the best possible approximation with the particular functional (!) form chosen. See p46 Fig 1.9

6) p103 The point x is on the z axis, so \gamma =0, P_l(1)=1, so eq reduces to (3.37).

§2 Sep 24, 刘冶华 e.a. For 1D light wave propagating through an interface, it can be shown that E+E”=E’ and the equality of their derivative w.r.t. x. (like \psi in QM). E is tangent to surface, so the 1st equation is actually n x (E_2 - E_1)=0. The relation of derivative can be derived from continuity of H, which is proportional to curl E. Above results work for normal incidence as well.

混合0502(光电0504) 徐博

§3 05lkbzt@st.zju.edu.cn 1、第179页式5.21是由上一等式经分部积分(integration by part应该是分部积分吧)所得 ,但关于三重积分的分布积分法则我们在数学分析中没有学过,所以您能不能在上课的时候把 这一方面的数学内容将一下,在书上有多处都用到了分部积分。 Treatment in the book is not clear, see my notes

2、第32页上D(x)的定义中两表面S与S‘无限接近的同时面电荷密度趋于无穷大,但d与σ的成 绩为什么可以取有限定值,这是不是一个实验结论? 3、第34页中使用了立体角,但立体角的内容我在解析几何书上没有找到,老师能不能简单的 讲一下立体角的积分法则? 4、第213页的式5.146中,积分第二项为零是为什么? Using Gauss’s law, the surface integral vanishes.

§4 何斯慧 第41页中,式(1.54)怎样由上面的式子得到? 第45页中,式(1.72)上面的一段话“The reason is that, if the source density g is well behaved and finite at the origin, Gauss’s law shows that ψhas a maximum or minimum there with vanishing slope.”没看懂这一解释。 第181页中,Sect5.5的上面一段“If △ψ=0 holds in all space, ψ must be at most a constant provided there are no sources at infinity.”为什么?

第181页中,(5.33)怎样从Fig.5.5得到? 第185页中,(5。52)怎样得到? 第185页倒数第三行, 为什么? The trick works also for charge density of the ring (p123)

7.第102页中,power series 怎样算出来? 还有(3.38)怎么得到? 8.第189页中, (5.67)上面,为什么x → Bk(0), 而不是x→0 ? 还有(5。69)下面的那一段话是什么意思? 9.第197页中,为什么(5.100)比(5.97)多了后面一项? 10.想问一下下面的结论是否正确? 一组粒子,既可以描述成带电荷量q i’和磁荷量g i’,也可描述成只带电荷q i 其中 μg i’ g j’/4πr2 + q i’ q j’/4πr2ε = q i q j/4πr2ε 这样,可以把磁场(B= μg i’ /4πr2 ),磁荷转化成电场,电荷。于是,在电磁场中运动的电荷,磁荷所受的力,就等于对应的静止的电荷在电场中所受的力,只要用库仑定律就可以求出总的力了。

为常矢量 例: 求 其中 为常矢量 例: 求 解:

Formulae for Del operator 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.