柱坐标 Bessel函数 b.c. basis J0(ωa)=0 J0(ωnr) J1(ωnr) J0'(ωa)=0 J1(ωa)=0

Slides:



Advertisements
Similar presentations
高三英语有效复习策略 程国学. 一、高考备考的方向把握 1. 认真研究普通高中《英语课程标准》和《福建 省考试说明》关注高考命题原则和发展方向,定 准复习教学起点 1. 认真研究普通高中《英语课程标准》和《福建 省考试说明》关注高考命题原则和发展方向,定 准复习教学起点 一是明确高考英语可能考什么,我们应该怎样准.
Advertisements

考纲研读 语言知识要求 语言运用能力 附录 1: 语音项目表 附录 2: 语法项目表 附录 3: 功能意念项目表 附录 4: 话题项目表 附录 5: 词汇表 听力 阅读 写作 口语.
§ 3 格林公式 · 曲线积分 与路线的无关性 在计算定积分时, 牛顿 - 莱布尼茨公式反映 了区间上的定积分与其端点上的原函数值之 间的联系 ; 本节中的格林公式则反映了平面 区域上的二重积分与其边界上的第二型曲线 积分之间的联系. 一、格林公式 二、曲线积分与路线的无关性.
歷史二 第一篇 第二章 三代的興衰與文化 第一節 三代興衰與封建體制 第二節 時代劇變與學術教育的發達.
100 學年度 勞委會就業學程 國際企業管理學系-物業管理學程介紹. 何謂物業管理? 以台灣物業管理學會 所述,物業管理區分為 「物」、「業」、「人」三區塊。台灣物業管理學會 「物」係指傳統的建物設備、設施 「業」為不動產經營的資產管理 「人」則以生活服務、商業服務為主,並以人為 本位連結物與業,形成今日物業管理三足鼎立新.
图书馆管理实务.
导 游 基 础 知 识.
行政命令.
传道书 12种虚空 9处不可知 23样价值观 7个小结论 人生是虚空的虚空! (没有神的人生)
共产党领导的多党合作和政治协商制度: 中国特色的政党制度.
主讲:材料工程学院党总支宣传委员、党务秘书 教工党支部书记 王国志 2015年12月7日
普通高中新课程实验 若干问题 广东省教育厅教研室 吴惟粤 2004年4月29日 广州.
前言 採購程序每一環節所涉及人員,無論是訂定招標文件、招標、審標、決標、訂約、履約管理、驗收及爭議處理,如缺乏品德操守,有可能降低採購效率與品質,影響採購目標之達成,甚有違法圖利情事發生,致阻礙政府政策之推動並損害公共利益。因此,較之一般公務人員,採購人員更需遵循較高標準之道德規範。 主講人:林中財.
欢迎新同学.
2015年新课标高考历史试题分析 暨考试方向研判 李树全 西安市第八十九中学.
课题四 以天池、博斯腾湖 为重点的风景旅游区
3.《增值税纳税申报表(小规模纳税人适用)》填写
“健康的基督徒” 入门.
南台科技大學電子工程系 指導老師:楊榮林 老師 學生姓名:蔡博涵 巨物索餌感測裝置(第II版)
(教育学博士,曾任中学副校长,兼职南京大学博士后)
〝奇異恩典〞~陳進成 『我的弟兄們,你們落在百般試煉中,都要 以為大喜樂;因知道你們的信心經過試驗, 就生忍耐。但忍耐也當成功,使你們成全、
近期国内景区安全事故.
外国小说话题突破系列之七 情感.
一般纳税人增值税 纳税申报表填写指引 白银高新区国税局 纳税服务科 2016年5月.
第7课 古罗马的政制与法律.
第二单元 商鞅变法 第1课 改革变法风潮与秦国历史机遇(背景) 第2课 “为秦开帝业”──商鞅变法(内容)
内 容 ● 民间非营利组织会计实务操作 ● 项目会计核算中注意事项 ● 社会组织年检报告的填列 ● 社会组织评估中财务资产指标的解释
荆轲刺秦王 《战国策》.
初探逻辑推理 提高思维水平 ——《逻辑和语文学习》
列王紀下8章 啟示錄12章 書念婦人 婦人 死裡復活的兒子 被提的男孩子 七年饑荒 三年半大災難 非利士地 曠野 歸還房屋田地
佛教既是外來宗教, 為何盛行於中國?.
港澳信義會明道小學 天地有情 分享者:徐燦麗老師、 蘇娟玉老師 日期:2005年12月3日 P.1.
第二章 三代的興衰與文化 第二節 時代劇變與學術教育的發達
江苏衡鼎律师事务所苏州分所 苏州广正知识产权代理有限公司
上海教育出版社 《历史与社会》九年级(全一册) 教师教材培训 深圳市南山区北师大南山附中 熊菊珍 年 8 月 13 日.
桃園縣龜山鄉文欣國小 校園植物簡介 內庭區.
耶利米书.
河北民族师范学院图书馆志愿服务个案 张田吉
列王紀概覽.
南亚、中亚 要点·疑点·考点 位置:位于喜马拉雅山以南,印度洋以北,大部分在10°N~30 °N之间 内陆国——尼泊尔、锡金、不丹
張騫、班超通西域.
第六章 技术创新与经济增长 本章主要问题 ---技术创新过程 ---技术创新分类 ---技术创新动力源 ---技术创新影响因素
传道书 12种虚空 9处不可知 23样价值观 7个小结论 人生是虚空的虚空! (没有神的人生)
朝代接龙(排一排,把下列朝代按建立的先后顺序排列)(10分)
会计电算化 录入期初余额 北京科技宏远有限公司总账系统启用日期有二种方案,一是2006年1月,二是2006年2月,其他初始设置完全一样,假定你是该公司会计主管,你选哪种方案?为什么?? ?
台湾是我国领土不可分割的一部分,台海局势总是引起各方关注,特别是美国。为什么美国对台湾虎视眈眈?
第一單元 儒家思想與中國社會 專題一 孔孟思想與儒家的發展.
我国处理民族关系的基本原则.
斗兽场 万神殿 圣彼得大教堂 君士坦丁凯旋门.
回忆与思考: 中国早期政治制度有哪些重要特点? ◇神权与王权结合; ◇以血缘关系为纽带形成国家政治结构;
第二课 走向“大一统”的秦汉政治.
11 室外装饰设计 本章提要 本章主要讲述了室外装饰设计的含义及其基本特征,室外装饰设计的基本原则,中外室外装饰设计的基本概况,室外装饰设计与室外环境的关系、建筑装饰的细部设计以及店面装饰设计等内容。
让“反思”成为一种习惯 北京一师附小 韩玉娟.
第六节 春秋战国时期的社会经济和社会变革.
異端與異教 基督信仰.
漢魏間的國際局勢與女性外交 -〈昭君怨〉與悲憤〈胡笳十八拍〉
耶利米书.
彌迦書 緒論.
課程簡介.
南國被擄( BC共分三批) 巴比倫帝國 猶大 巴比倫 猶大人被擄巴比倫.
地震 在板塊交接處,因岩層受到外力作用,相互 擠壓或張裂,易造成斷層錯動,同時釋出巨 大的能量,此能量以波的型式並藉由岩層傳
Partial Differential Equations §2 Separation of variables
北國 亞述 巴比倫 南國 那鴻 以利亞 西番雅 以利沙 哈巴谷 約珥 約拿 俄巴底亞 阿摩司 北 何西阿 耶利米 以賽亞 以西結 南 彌迦
北国 亚述 巴比伦 南国 那鸿 以利亚 西番雅 以利沙 哈巴谷 约珥 约拿 俄巴底亚 阿摩司 北 何西阿 耶利米 以赛亚 以西结 南 弥迦
第二十章 贝塞尔函数 柱函数 在用分离变量法一章介绍了拉普拉斯方程在柱坐标系下分离变量得到了一种特殊类型的常微分方程:贝塞尔方程.
五萬人歸回 猶大 巴比倫帝國 波斯帝國 希 被 擄 (1) 被 擄 (2) 被 擄 (3) 歸 回 被擄70年 哈巴谷 俄巴底亞 耶利米
啟示錄精要 第六講 撒但的結局、審判 ﹝第廿章﹞.
五萬人歸回 猶大 巴比倫帝國 波斯帝國 希 被 擄 (1) 被 擄 (2) 被 擄 (3) 歸 回 被擄70年 哈巴谷 俄巴底亞 耶利米
圣经概論 09.
何西阿書.
Presentation transcript:

柱坐标 Bessel函数 b.c. basis J0(ωa)=0 J0(ωnr) J1(ωnr) J0'(ωa)=0 J1(ωa)=0 N0(ωnr) N1(ωnr) N2(ωnr) spring UST©-math-phy weihuang §3Bessel 贝塞尔

n J0零点x0In |J1(x0n)| J0'或J1零点 1 2.4048 0.5191 3.8317 2 5.5201 0.3403 1 2.4048 0.5191 3.8317 2 5.5201 0.3403 7.0156 3 8.6537 0.2715 10.1735 4 11.7915 0.2325 13.3237 5 14.9309 0.2065 16.4706 6 18.0711 0.1877 19.6159 7 21.2116 0.1733 22.7601 8 24.3525 0.1617 25.9037 9 27.4935 0.1522 29.0468 10 BesselJZero[0,10] //N =30.6346 BesselJ[1, BesselJZero[0,10] ] //N//Abs =0.1442 N[ BesselJZero[1,10] ]=32.1897 fzero(@(x)besselj(1,x), 32) ←(*Mathematica*) (或Maple符号计算 Matlab工程/数值) UST©-math-phy weihuang

打靶: 按问题给的b.c. 找Jν→0的那些x=ωa 找得 可数(无穷多个离散的可排序的) 非负 实 本征值 J0(ωa)=0, boundary a=1 J0'(ωa)=0 ↔ J1(ωa)=0 spring UST©-math-phy weihuang

一种完备正交函数系{J0(ω0Inr)} 另一种完备正交函数系{J0(ω0IInr)} n>0 对应 I齐b. c 一种完备正交函数系{J0(ω0Inr)} 另一种完备正交函数系{J0(ω0IInr)} n>0 对应 I齐b.c. n≥0 对应 II齐b.c. 类比三角函数系{cosωnr} spring UST©-math-phy weihuang

完备正交函数系{Jν(ων I/II/III nr)} {J0(ω0Inr)} {J0(ω0IInr)} I b.c. II b.c spring UST©-math-phy weihuang

又一种完备正交函数系{J1(ω0Inr)} I齐b.c., n>0, 柱径取为1 类比三角函数系{sinωnr} spring UST©-math-phy weihuang

{J1(ω1Inr)} {J1(ω1IInr)} I b.c. II b.c spring UST©-math-phy weihuang

spring UST©-math-phy weihuang

spring UST©-math-phy weihuang

*(k2-μ<0情况)虚宗量Bessel方程的通解 spring UST©-math-phy weihuang

*A教材 例3.4.7 spring UST©-math-phy weihuang

*(球问题)球Bessel方程的通解 和固有值问题的解 spring UST©-math-phy weihuang