Lipid Metabolism & Hyperlipidemic Syndrome

Slides:



Advertisements
Similar presentations
何謂高血脂 血脂異常與健康 息息相關 體重的控制 飲食的控制 適度的運動 高血脂 的高危險群 血液中所含的脂肪簡稱血脂,主要包含膽 固醇、三酸甘油脂、脂肪酸、磷脂質等 等 … 當血脂的濃度過高、超過正常時,就 稱為高血脂。
Advertisements

第六章 血浆脂蛋白及其代谢紊乱 中国医科大学第一临床学院 赵 敏. 概 述 甘油三酯 (TG) 脂肪 胆固醇 (C) 游离胆固醇 (FC) 血脂 胆固醇酯 (CE) 磷脂 (PL) 类酯 糖酯 固醇 类固醇.
12.7 脂肪食物與健康 我的膽固醇偏高, 不宜吃這些快餐食 物啊! 爺爺,我想集齊 這套玩具啊!不 如進去吃吧! 為甚麼膽固醇偏高的人 不宜吃過多快餐食物?
肥胖與減重 營養師 - 司徒蓁 身體質量指數 (BMI) ( Body Mass Index )
油脂水解主要成份為脂肪酸,在自然 界脂肪酸其碳數多為偶數且以直鏈結 構存在 脂肪酸有三種 (1) 飽和脂肪酸 (2) 單元不飽和脂肪酸 (3) 多元不飽和脂肪酸 對人體健康需求 (1) 必需脂肪酸 (2) 非必需脂肪酸 1. 油脂功能與成分.
大綱  前言  什麼是低血糖症  引起低血糖症的因素  低血糖有那些症狀  如何處理低血糖症  如何預防低血糖症  結論.
运动与生命 阳光、空气、水和体育 运动是生命和健康的源 泉 有氧运动在美国 高血压发病率下降 30 %以上 高血压发病率下降 30 %以上 心梗死亡率下降 37 % 心梗死亡率下降 37 % 脑卒中死亡率下降 50 % 脑卒中死亡率下降 50 % 人均寿命延长了 6 年 人均寿命延长了 6 年.
疾病离我们有多远? 张晓林. 我们的健康出了什么问题? 高科技、高收入带来了什么? “ 五高现象 ” 长寿命、老龄化催生着什么? 健康维护 快节奏、快经济发达影响着什么? 心理健康 高血压、高血糖、高血脂、高体重、高尿酸 生活指导、健康咨询、康复训练、有效防护 适应生活工作的节奏、正确处理人际关系、恰当.
莊曜聰 醫師 高血壓與高血脂. 92 年國人十大死因排行榜及每日死亡人數 NO.2 腦血管疾病 ( 每 42 分 22 秒有 1 人死亡 ) 34 人 / 日 NO.3 心臟疾病 ( 每 44 分 36 秒有 1 人死亡 ) 32 人 / 日 NO.4 糖尿病 ( 每 52 分 30 秒有 1 人死亡.
健康 HAPPY GO 均衡飲食與代謝症候群 劉汶璋 營養師. 不均衡有多可怕 !!! 2.
104/8/5 1 飲酒與健康. 飲酒歷史 酒,在全世界各地都有個別的飲酒文化及 飲酒習慣,在各類節慶祭典都扮演舉足輕 重的角色,而現今的商業社會中,酒更是 應酬時拉近彼此距離,促進雙方合作意願 之必備品。 而適量的飲酒可達成合作目標,而過量飲 酒卻有礙健康。
最根本的養生之道 主講人:無毒的家國際連鎖店創辦人 《不用刀的手術》作者 王康裕 不用刀的手術 ── 布魯士根菜汁的神奇配方.
冠心病的发病原因 此文档来源于 内容大纲 1 导读 2 冠心病的发病原因 3 成功案例 4 详细介绍 5 图片 6 开心一笑.
零食的危害 三、吃零食的危害 同学们正处于长身体的特殊时期, 对能量和各种营养素的需要量比成 年人相对要多,吃零食,虽然满足 了 " 嘴 " 的要求,但到吃饭时却吃不 下去了,造成主次颠倒,影响食欲, 妨碍消化系统功能,结果损害了身 体健康。 第一、经常吃零食,会破坏正常的 饮食制度,打乱胃肠消化活动的规.
吉大二院 于桂云. 第一节 概述 女性生殖器官自然防御功能 女性生殖器官自然防御功能 病原体 病原体 传播途径 传播途径.
生 物 的 新 陈 代 谢生 物 的 新 陈 代 谢 人和动物的三大营养物质代谢. 几点说明 1 、人体内营养物质的来源、去向 三个来源: 食物中 XX 的消化、吸收 自身 XX 分解 其他物质的转化 三个去向: 合成 XX (或贮存) 氧化分解供应能量 转化为其他物质.
40 多岁的王先生, 最近一年来, 开车 时偶尔会有一点点胸闷、背痛的 感觉, 他以为自己应该是工作太累 了, 且往往休息一下就没事, 所以并 不以为意。有一次从林口开车返 回台北, 在山路上, 突然觉得胸口疼 痛不已, 还好车内刚好有顺路搭他 便车的同事, 立刻将他送到医院, 照 心电图发现心脏缺氧,
高血脂 一、了解高血脂 二、造成高血脂的原因 三、如何科学降血脂 四、配方.
糖尿病慢性并发症 识别、处理和预防.
脑卒中的预防 汉中市疾病预防疾控中心 慢性病防制科
人体代谢与疾病 , Metabolism in human body and Diseases 生物化学与分子生物学教研室 吴耀生教授 ,
人和动物体内三大 营养物质的代谢 江苏大丰南中 殷宝宽.
第 十 七 章 肝的生物化学 Biochemistry in Liver 授课教师:王逢会.
天天五蔬果 蔬食的好處 林依慧 營養師.
专题二 新陈代谢 植物新陈代谢 动物新陈代谢 微生物新陈代谢.
第九章 糖 代 谢 (Carbohydrate metabolism).
血清(浆)脂类及脂蛋白测定 ——董雷鸣.
糖類的化學鍵結 王鳳英 副研究員.
目录 Section 1. 脂类化学 Section 2. 脂类代谢 Section 3. 类脂的代谢 Section 4. 脂类代谢的调节
第五章 血浆脂蛋白及其代谢紊乱 Plasma Lipoproteins and Its Metabolic Disorder
糖尿病的综合防治 健 康 大 课 堂.
本文件不代表官方立場,且作者已盡力確保資料的 準確性,惟任何未經授權擅自使用本資料所造成的損害,作者不負賠償責任。
心血管疾病與克醇 講師:陳劍旗 藥師.
细胞代谢专题突破 黄岛实验中学 王玉美.
糖代谢中的其它途径.
提高教学有效性刍议 赵占良 2010年10月.
物质代谢的联系与调节 §1、物质代谢的特点 §2、物质代谢的相互联系 一、在能量代谢上的相互联系 二、三大营养物质代谢间的联系
第 六 章 脂 类 代 谢 第一节 概 述 第二节 三酯酰甘油的中间代谢 第三节 类脂代谢 第四节 血 脂.
食品生物化学 任课教师:迟明梅.
脂 类 代 谢 第九章 本章主要介绍脂类(主要是脂肪)物质在生物体的分解及合成代谢。要求学生重点掌握脂肪酸在生物体内的氧化分解途径—β-氧化和从头合成途径,了解脂类物质的功能和其他的氧化分解途径。 思考 脂类代谢 返回.
第七章 脂类与脂类代谢.
第九章 脂 类 代 谢 Metabolism of Lipids.
应重视 动脉硬化的调脂疗法 董国祥 北京大学第三医院血管外科.
第二篇 发酵机制 发酵机制:微生物通过其代谢活动,利用基质(底物)合成人们所需要的代谢产物的内在规律 积累的产物 微生物菌体 酶 厌气发酵:
争先创优,做新时期的合格党员 骨科支部 董 健.
肝 性 脑 病.
如何預防膽固醇 從 專 業 醫 療 到 無 限 關 懷 ! ●何謂膽固醇? ●膽固醇的參考值 膽固醇可分二種,LDL(低密度脂蛋白膽
红曲的研究与发展.
防治高血脂 鸽子.
脂 类 代 谢.
神经内科—血脂篇 仅供内部使用.
健康講座 遠離代謝症候群 啟新診所 運動保健師 尤怡凱.
能量營養素 油脂營養與食物來源 蕭寧馨 應用營養研究室 台灣大學生化科技系 2010.
麵食類的烹調.
物质跨膜运输的方式 第四章 第二节 授课者 厦门三中 武永红 高一(7)班.
Chapter28 脂肪酸的分解代谢 Metabolism of Lipids ? 脂肪酸的分解代谢 2018年5月27日星期日.
[什麼是尿動力學檢查] [適應症] [檢查流程] [檢查前注意事項] [檢查中注意事項] [檢查後注意事項] [併發症/禁忌症] [結語]
15 柠檬酸循环.
主页: 骆严 Yan LUO 主页: 手机: 浙江大学基础医学院 浙江大学肿瘤研究所.
第三节 微生物的耗能代谢(生物固氮) 一、固氮微生物 二、固氮酶 三、影响固氮作用的主要因素.
第10讲 光合作用的探究历程与基本过程 2017备考·最新考纲 1.光合作用的基本过程(Ⅱ)。2.实验:叶绿体中色素的提取和分离。
第10章 脂类代谢 主讲教师:王玉.
第9章 脂代谢.
第九章 物质代谢的联系与调节 Interrelationships & Regulations of Metabolism
1.ATP的结构: A-P~P~P 高能磷酸键 ADP+ Pi+ 能量 酶 磷酸基团 腺苷.
第一节能量代谢 定义:生物体内物质代谢中所伴随着 的能量释放、转移和利用等, 称为能量代谢。
蛋白质分离技术-电泳 上海交通大学医学院 倪培华 副教授.
主页: 骆严 Yan LUO 主页: 手机: 浙江大学基础医学院 浙江大学肿瘤研究所.
健康身體彩色人生~ 會說話的身體 松山高中健康與護理 郭靜靜 中華民國一百年九月十八日.
Tel: 环境微生物学 侯森 暨南大学环境学院 Tel:
Presentation transcript:

Lipid Metabolism & Hyperlipidemic Syndrome 脂类代谢与高血脂症 Lipid Metabolism & Hyperlipidemic Syndrome 刘杨 电邮:liuyang0620@zju.edu.cn 手机: 17767178177 浙江大学基础医学院免疫学研究所

脂类(lipids), 脂肪(fat)和类脂(Lipoid)的总称。是一类不溶于水而易溶于有机溶剂,并能为机体利用的有机化合物。 * 脂类(lipids), 脂肪(fat)和类脂(Lipoid)的总称。是一类不溶于水而易溶于有机溶剂,并能为机体利用的有机化合物。

脂类的消化和吸收

甘油三酯代谢

* 甘油三酯结构 饱和 单不饱和 多不饱和

常见的脂肪酸  * 必需脂肪酸:机体必需但自身又不能合成或合成量不足,必须从植物油中摄取的脂肪酸叫必需脂肪酸。包括亚油酸、亚麻酸和花生四烯酸。

* 一、甘油三酯的分解代谢 (一)脂肪动员 (二)脂肪酸的-氧化 (三)酮体的生成和利用

(一) 脂肪动员

脂肪动员产物的去向 * 甘油直接运至肝、肾、肠等组织。主要在肝、肾进行糖异生。 脂肪细胞及骨骼肌等组织因甘油激酶活性很低,故不能很好利用甘油。

脂肪酸在血中由清蛋白运输。主要由心、肝、骨骼肌等摄取利用产能。 * 脂肪酸在血中由清蛋白运输。主要由心、肝、骨骼肌等摄取利用产能。

(二)脂肪酸的-氧化 * 部位:肝及肌肉最活跃。 步骤: 脂酸的活化——脂酰CoA的生成 脂酰CoA进入线粒体 脂酸的-氧化   脂酸的-氧化   脂酸氧化的能量生成

* 1. 脂酸的活化——脂酰CoA的生成 在胞液中进行 反应不可逆 消耗2个~P 脂酰CoA合成酶

* 2. 脂酰CoA进入线粒体 脂肪酸活化在细胞液中进行,而催化脂肪酸氧化的酶系是在线粒体基质内。活化的脂酰CoA必须在肉碱(carnitine)的协助下进入线粒体内。 3. 脂酸的-氧化 长链脂酰CoA的β氧化是在线粒体脂肪酸氧化酶系作用下进行的,从β-碳原子开始,每次氧化断去二碳单位的乙酰CoA进行水解,这一过程叫β氧化。再经TCA循环完全氧化成二氧化碳和水,并释放大量能量。

* 脂肪酸β-氧化本身不产能。只能生成乙酰CoA和供氢体;它们必须分别进入三羧酸循环和氧化磷酸化才能生成ATP。1分子软脂酸氧化共生成106分子ATP

(三)酮体的生成和利用 * 1. 酮体的生成 酮体是脂酸在肝分解氧化时特有的中间代谢产物。是乙酰乙酸、-羟丁酸和丙酮三者的统称。   酮体是脂酸在肝分解氧化时特有的中间代谢产物。是乙酰乙酸、-羟丁酸和丙酮三者的统称。 1. 酮体的生成 部位:肝线粒体 原料:乙酰CoA,主要来自脂酸的-氧化。 关键酶:HMG CoA合成酶

酮体生成的生理意义 * 酮体是肝脏输出能源物质的一种形式。在长期饥饿时,是脑和肌肉的主要能源物质。 正常血酮体含量为0.03~0.5mmol/L。在长期饥饿、糖尿病或供糖不足情况下,肝内生成酮体超过肝外利用能力时,会导致血中酮体升高。

* 二、 甘油三酯的合成代谢 脂肪酸合成的碳源主要来自线粒体中的糖和氨基酸代谢产生的乙酰CoA。脂肪酸合成步骤与氧化降解步骤完全不同。脂肪酸的生物合成是在细胞液中进行,而脂肪酸氧化降解是在线粒体中进行的。 (一)脂酸的合成代谢 (二)甘油三酯的合成代谢

* (一)脂酸的合成代谢 软脂酸的合成 脂酸碳链的加长 不饱和脂酸的合成

软脂酸(16C饱和)的合成 * (1)合成部位 组 织:肝(主要) 、脂肪等组织 亚细胞: 胞液:主要合成16碳的软脂酸(棕榈酸) 组 织:肝(主要) 、脂肪等组织 亚细胞: 胞液:主要合成16碳的软脂酸(棕榈酸) 肝线粒体、内质网:碳链延长 (2)合成原料 乙酰CoA为主要原料,主要来自葡萄糖;NADPH主要来自磷酸戊糖途径;还需ATP 、CO2及Mn2+等。 (3)乙酰CoA需活化为丙二酰CoA

(7乙酰CoA + 7HCO3- + 7H+)【(7 ATP 7ADP + 7Pi )】 * 软脂酸合成的总反应式: (7乙酰CoA + 7HCO3- + 7H+)【(7 ATP 7ADP + 7Pi )】 1分子乙酰CoA先后与7分子丙二酰CoA在脂酸合成酶系的分子上依次重复进行缩合、还原、脱水和再还原的过程。每重复一次碳链延长2个碳原子。

2/3. 脂酸碳链加长和不饱和化 动物细胞内只能通过脱氢 反应产生单不饱和脂酸 内质网 线粒体 长链脂酸的前体 软脂酰CoA 二碳单位的供体 酰基载体 HSCoA 终产物 18C~24C 18C~26C 动物细胞内只能通过脱氢 反应产生单不饱和脂酸

(二)甘油三酯的合成代谢 * 合成部位:肝、脂肪组织及小肠。 合成原料:甘油、脂酸主要由糖代谢提供。 合成基本过程: 甘油一酯开始 (类似于补救合成) (磷酸)甘油开始 (类似于从头合成)

* 甘油三酯结构 饱和 单不饱和 多不饱和

Metabolism of Phospholipids 磷脂的代谢 Metabolism of Phospholipids

含有磷酸的脂类称为磷脂,是脂类中极性最大的化合物。 * 含有磷酸的脂类称为磷脂,是脂类中极性最大的化合物。

一、甘油磷脂的组成、分类及结构 组成:甘油、脂酸、磷酸及含氮化合物 基本结构:

* 甘油磷脂第2位脂酸通常是花生四烯酸。 甘油磷脂是极性最强的脂类。是一种两性化合物。 甘油磷脂的功能: 构成生物膜脂质双分子层; 作为乳化剂,促进脂类的消化吸收与转运。

甘油磷脂的分类(功能多样) X-OH X取代基 甘油磷脂的名称 水 -H 磷脂酸 胆碱 -CH2CH2N+(CH3)3 磷脂酰胆碱 乙醇胺 -CH2CH2NH3+ 磷脂酰乙醇胺 丝氨酸 -CH2CHNH2COOH 磷脂酰丝氨酸 甘油 -CH2CHOHCH2OH 磷脂酰甘油 二磷脂酰甘油 肌醇 磷脂酰肌醇

Cholesterol Metabolism 胆固醇代谢 Cholesterol Metabolism

胆固醇 (cholesterol) The polar head provides esterification site

一、胆固醇的合成 * (一)合成部位:主要在肝的胞液及内质网中。每天合成量约1g。(一个蛋黄含200-300 mg 胆固醇) (二)合成原料: 乙酰CoA:主要来自Glucose NADPH:主要来自磷酸戊糖途径 ATP:主要来自Glucose有氧氧化

(三)合成基本过程:

二、胆固醇的转化 (一)转变为胆汁酸 初级胆汁酸:在肝脏由胆固醇直接转变生成的胆汁酸。包括游离型和结合型。胆汁酸合成的限速酶是7--羟化酶。 次级胆汁酸:初级胆汁酸经胆道系统排入肠道,在肠道细菌作用下的产物。 胆汁酸可以经过肠肝循环重新利用

(二)转化为类固醇激素 (三)转化为7-脱氢胆固醇 * 在性腺和肾上腺皮质转变为性激素(睾酮、雌二醇、孕酮)和肾上腺皮质激素(醛固酮、皮质醇、皮质酮) (三)转化为7-脱氢胆固醇

高血脂症: 脂类浓度的不正常提高 主要是指胆固醇或甘油三酯 单一型:胆固醇或甘油三酯偏高 混合型:胆固醇和甘油三酯都偏高

血浆脂蛋白 脂类本身不溶于水,它们必须与蛋白质结合形成脂蛋白才能以溶解的形式存在于血浆中,并随血流到达全身各处。在正常情况下,超速离心法可将血浆脂蛋白分为乳糜微粒(CM)、极低密度脂蛋白(VLDL)、低密度脂蛋白(LDL)及高密度脂蛋白(HDL)4种。区带电泳法也可相应地把血浆脂蛋白分为CM、前β、β及α脂蛋白4种。脂蛋白中蛋白组分称载脂蛋白。

对应关系: 乳糜微粒 (CM):乳糜微粒 (CM) 前β脂蛋白:极低密度脂蛋白 (VLDL) β脂蛋白:低密度脂蛋白 (LDL) α脂蛋白:高密度脂蛋白(HDL)

protein/ lipid ratio: HDL > LDL > VLDL> CM

胆固醇约占血浆总脂的1/3,有游离胆固醇和胆固醇酯两种形式,其中游离胆固醇约占1/3,其余的2/3与长链脂肪酸酯化为胆固醇酯。 (2) 甘油三酯,又称中性脂肪,约占血浆总脂的1/4。 (3) 磷脂 (简写为PL),约占血浆总脂的1/3。 (4) 游离脂肪酸 (简写FFA),又称非酯化脂肪酸,约占血浆总脂的5%~10%,它是机体能量的重要来源。

Positive correlation between serum cholesterol levels and heart disease (total levels) Level mg/dL Level mmol/L Interpretation < 200 < 5.2 Desirable level corresponding to lower risk for heart disease 200–240 5.2–6.2 Borderline high risk > 240 > 6.2 High risk

2/3血浆胆固醇通过LDL受体途径吸收/清除 其余1/3通过清道夫受体途径吸收/清除

LDL受体的发现 Mike Brown and Joe Goldstein: 1985 Nobel Laureates in Physiology or Medicine for their discovery of LDL receptor LDL受体的发现

复杂 的脂类 代谢调 控网络

Lavostatin (红曲霉素) 降胆固醇药物主要针对限速酶 红曲霉 平菇

谢谢